Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain

被引:34
作者
Galli, Roberta [1 ]
Uckermann, Ortrud [2 ]
Koch, Edmund [1 ]
Schackert, Gabriele [2 ]
Kirsch, Matthias [2 ,3 ,4 ]
Steiner, Gerald [1 ]
机构
[1] Tech Univ Dresden, Fac Med, D-01307 Dresden, Germany
[2] Tech Univ Dresden, Carl Gustav Carus Univ Hosp, Dept Neurosurg, D-01307 Dresden, Germany
[3] Ctr Regenerat Therapies Dresden, DFG Res Ctr, D-01307 Dresden, Germany
[4] Ctr Regenerat Therapies Dresden, Cluster Excellence, D-01307 Dresden, Germany
关键词
scanning microscopy; multiphoton processes; Raman spectroscopy; EX-VIVO; SPECTROSCOPY; LIPIDS; TUMORS; MICROSCOPY; LIPIDOMICS; SPECTRA; BIOLOGY; MYELIN;
D O I
10.1117/1.JBO.19.7.071402
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging multiphoton technique for the label-free histopathology of the central nervous system, by imaging the lipid content within the tissue. In order to apply the technique on standard histology sections, it is important to know the effects of tissue fixation on the CARS image. Here, we report the effects of two common fixation methods, namely with formalin and methanol-acetone, on mouse brain and human glioblastoma tissue. The variations induced by fixation on the CARS contrast and intensity were compared and interpreted using Raman microspectroscopy. The results show that, whenever unfixed cryosections cannot be used, fixation with formalin constitutes an alternative which does not deteriorate substantially the contrast generated by the different brain structures in the CARS image. Fixation with methanol-acetone strongly modifies the tissue lipid content and is therefore incompatible with the CARS imaging. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:7
相关论文
共 46 条
[1]  
Adibhatla RM, 2006, AAPS J, V8, pE314
[2]  
[Anonymous], J BIOPHOTON
[3]  
[Anonymous], FIXATION HISTOCHEMIS
[4]  
Barba I, 1999, CANCER RES, V59, P1861
[5]   Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy [J].
Belanger, Erik ;
Crepeau, Joel ;
Laffray, Sophie ;
Vallee, Real ;
De Koninck, Yves ;
Cote, Daniel .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (02)
[6]   Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe [J].
Beljebbar, Abdelilah ;
Dukic, Sylvain ;
Amharref, Nadia ;
Manfait, Michel .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (01) :477-487
[7]   Unsupervised unmixing of Raman microspectroscopic images for morphochemical analysis of non-dried brain tumor specimens [J].
Bergner, Norbert ;
Krafft, Christoph ;
Geiger, Kathrin D. ;
Kirsch, Matthias ;
Schackert, Gabriele ;
Popp, Juergen .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 403 (03) :719-725
[8]   Dual-pump coherent anti-Stokes-Raman scattering microscopy [J].
Burkacky, Ondrej ;
Zumbusch, Andreas ;
Brackmann, Christian ;
Enejder, Annika .
OPTICS LETTERS, 2006, 31 (24) :3656-3658
[9]   State of the art in antigen retrieval for immunohistochemistry [J].
D'Amico, Fabio ;
Skarmoutsou, Evangelia ;
Stivala, Franca .
JOURNAL OF IMMUNOLOGICAL METHODS, 2009, 341 (1-2) :1-18
[10]   CENTRAL-NERVOUS-SYSTEM MYELIN - STRUCTURE, FUNCTION, AND PATHOLOGY [J].
DEBER, CM ;
REYNOLDS, SJ .
CLINICAL BIOCHEMISTRY, 1991, 24 (02) :113-134