A proximal point algorithm for DC fuctions on Hadamard manifolds

被引:23
作者
Souza, J. C. O. [1 ,2 ]
Oliveira, P. R. [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE Sistemas, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Piaui, CEAD, Teresina, PI, Brazil
关键词
Nonconvex optimization; Proximal point algorithm; DC functions; Hadamard manifolds; VARIATIONAL-INEQUALITIES; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; NEWTONS METHOD; MONOTONE; CONVERGENCE;
D O I
10.1007/s10898-015-0282-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An extension of a proximal point algorithm for difference of two convex functions is presented in the context of Riemannian manifolds of nonposite sectional curvature. If the sequence generated by our algorithm is bounded it is proved that every cluster point is a critical point of the function (not necessarily convex) under consideration, even if minimizations are performed inexactly at each iteration. Application in maximization problems with constraints, within the framework of Hadamard manifolds is presented.
引用
收藏
页码:797 / 810
页数:14
相关论文
共 37 条
[1]   Trust-region methods on Riemannian manifolds [J].
Absil, P-A. ;
Baker, C. G. ;
Gallivan, K. A. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) :303-330
[2]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[3]  
[Anonymous], 1998, BALKAN J GEOM APPL
[4]  
[Anonymous], 1988, THESIS
[5]  
[Anonymous], ANN SCI MATH QUEBEC
[6]   Finite termination of the proximal point method for convex functions on Hadamard manifolds [J].
Bento, G. C. ;
Cruz Neto, J. X. .
OPTIMIZATION, 2014, 63 (09) :1281-1288
[7]   Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :88-107
[8]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[9]   Convex- and monotone-transformable mathematical programming problems and a proximal-like point method [J].
Da Cruz Neto, J. X. ;
Ferreira, O. P. ;
Perez, L. R. Lucambio ;
Nemeth, S. Z. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) :53-69
[10]  
do Carmo M.P., 1976, Math. Theory Appl.