A computationally efficient approach to the estimation of two- and three-dimensional hidden Markov models

被引:17
作者
Joshi, Dhiraj [1 ]
Li, Jia
Wang, James Z.
机构
[1] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Coll Informat Sci & Technol, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Hidden Markov models (HMMs); maximum likelihood estimation; parameter estimation; three-dimensional (3-D) HMM; Viterbi training; volume image processing;
D O I
10.1109/TIP.2006.877039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical modeling methods are becoming indispensable in today's large-scale image analysis. In this paper, we explore a computationally efficient parameter estimation algorithm for two-dimensional (2-D) and three-dimensional (3-D) hidden Markov models (HMMs) and show applications to satellite image segmentation. The proposed parameter estimation algorithm is compared with the first proposed algorithm for 2-D HMMs based on variable state Viterbi. We also propose a 3-D HMM for volume image modeling and apply it to volume image segmentation using a large number of synthetic images with ground truth. Experiments have demonstrated the computational efficiency of the proposed parameter estimation technique for 2-D HMMs and a potential of 3-D HMM as a stochastic modeling tool for volume images.
引用
收藏
页码:1871 / 1886
页数:16
相关论文
共 40 条
[1]  
[Anonymous], 1993, MARKOV RANDOM FIELDS
[2]  
Boreczky JS, 1998, INT CONF ACOUST SPEE, P3741, DOI 10.1109/ICASSP.1998.679697
[3]   A MULTISCALE RANDOM-FIELD MODEL FOR BAYESIAN IMAGE SEGMENTATION [J].
BOUMAN, CA ;
SHAPIRO, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (02) :162-177
[4]   Stationary Markov random fields on a finite rectangular lattice [J].
Champagnat, F ;
Idier, J ;
Goussard, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (07) :2901-2916
[5]   CLASSIFICATION OF TEXTURES USING GAUSSIAN MARKOV RANDOM-FIELDS [J].
CHELLAPPA, R ;
CHATTERJEE, S .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (04) :959-963
[6]   MARKOV RANDOM FIELD TEXTURE MODELS [J].
CROSS, GR ;
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (01) :25-39
[7]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[8]  
DERIN H, 1984, P IEEE INT C AC SPEE, P682
[9]   DESCRIPTION OF A RANDOM FIELD BY MEANS OF CONDITIONAL PROBABILITIES AND CONDITIONS OF ITS REGULARITY [J].
DOBRUSCH.PL .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (02) :197-&
[10]  
EICKELER S, 1998, WORKSH ADV FAC IM AN