Statistical αβ-Summability and Korovkin Type Approximation Theorem

被引:0
作者
Karaisa, Ali [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Math Comp Sci, Fac Sci, Meram Campus, TR-42090 Meram, Konya, Turkey
关键词
Korovkin's theorem; statistical convergence; statistical; (N-gamma; alpha beta) summability; statistical approximation; CONVERGENCE;
D O I
10.2298/FIL1613483K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we define [N-gamma; alpha beta](q)-summability and statistical (N-gamma; alpha beta) summability. We also establish some inclusion relation and some related results for this new summability methods. Further we apply Korovkin type approximation theorem through statistical (N-gamma; alpha beta) summability and we apply the classical Bernstein operator to construct an example in support of our result. Furthermore, we present a rate of convergence which is uniform in Korovkin type theorem by statistical (N-gamma; alpha beta) summability.
引用
收藏
页码:3483 / 3491
页数:9
相关论文
共 20 条
[1]  
Acar T., FILOMAT IN PRESS
[2]   Korovkin type approximation theorems proved via αβ-statistical convergence [J].
Aktuglu, Huseyin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :174-181
[3]  
[Anonymous], 2011, ANN U FERRARA SEZ 7, DOI DOI 10.1007/S11565-011-0122-8
[4]   A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean [J].
Braha, Naim L. ;
Srivastava, H. M. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 :162-169
[5]   Korovkin type approximation theorems obtained through generalized statistical convergence [J].
Edely, Osama H. H. ;
Mohiuddine, S. A. ;
Noman, Abdullah K. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (11) :1382-1387
[6]   Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials [J].
Erkus, Esra ;
Duman, Oktay ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) :213-222
[7]   Some Cesaro-Type Summability Spaces of Order α and Lacunary Statistical Convergence of Order α [J].
Et, Mikail ;
Sengul, Hacer .
FILOMAT, 2014, 28 (08) :1593-1602
[8]  
FAST H., 1951, Colloq. Math., V2, P241
[9]   Some approximation theorems via statistical convergence [J].
Gadjiev, AD ;
Orhan, C .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (01) :129-138
[10]  
Gaduziev A.D., 1974, SOV MATH DOKL, V15, P1433