Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders

被引:40
作者
Pineda, Sandy S. [1 ]
Sollod, Brianna L. [2 ]
Wilson, David [1 ,3 ]
Darling, Aaron [1 ]
Sunagar, Kartik [4 ,5 ]
Undheim, Eivind A. B. [1 ,6 ]
Kely, Laurence [6 ]
Antunes, Agostinho [4 ,5 ]
Fry, Bryan G. [1 ,6 ]
King, Glenn F. [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia
[2] Univ Connecticut, Sch Med, Dept Mol Microbial & Struct Biol, Farmington, CT 06030 USA
[3] Xenome, Indooroopilly Ctr, Indooroopilly, Qld 4068, Australia
[4] Univ Porto, Ctr Interdisciplinar Invest Marinha & Ambiental, CIMAR CIIMAR, P-4050123 Oporto, Portugal
[5] Univ Porto, Dept Biol, Fac Ciencias, P-4169007 Oporto, Portugal
[6] Univ Queensland, Sch Biol Sci, Venom Evolut Lab, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Spider toxin; Spider venom; Hexatoxin; omega-hexatoxin; k-hexatoxin; Australian funnel web spider; Molecular evolution; Gene duplication; Positive selection; Negative selection; AMINO-ACID SITES; PHYLOGENETIC ANALYSIS; PEPTIDE TOXINS; INSECTICIDAL NEUROTOXINS; SCANNING MUTAGENESIS; MOLECULAR EVOLUTION; POSITIVE SELECTION; CYSTINE KNOT; CONE SNAILS; MODEL;
D O I
10.1186/1471-2164-15-177
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Results: Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Conclusions: Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the omega-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the.hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the omega-hexatoxin are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.
引用
收藏
页数:16
相关论文
共 93 条
[1]  
Ayres DL, 2012, SYST BIOL, V61, P170, DOI [10.1093/sysbio/syr100, 10.1093/sysbio/sys029]
[2]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[3]  
Brust A, 2013, MOL CELL PROTEOMICS, V12, P1488, DOI [10.1074/mcp.M112.023135, 10.1074/mcp.A112.023135]
[4]   Complex cocktails: the evolutionary novelty of venoms [J].
Casewell, Nicholas R. ;
Wuester, Wolfgang ;
Vonk, Freek J. ;
Harrison, Robert A. ;
Fry, Bryan G. .
TRENDS IN ECOLOGY & EVOLUTION, 2013, 28 (04) :219-229
[5]   Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao [J].
Chen, J. ;
Deng, M. ;
He, Q. ;
Meng, E. ;
Jiang, L. ;
Liao, Z. ;
Rong, M. ;
Liang, S. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (15) :2431-2444
[6]   The ω-atracotoxins:: Selective blockers of insect M-LVA and HVA calcium channels [J].
Chong, Youmie ;
Hayes, Jessica L. ;
Sollod, Brianna ;
Wen, Suping ;
Wilson, David T. ;
Hains, Peter G. ;
Hodgson, Wayne C. ;
Broady, Kevin W. ;
King, Glenn F. ;
Nicholson, Graham M. .
BIOCHEMICAL PHARMACOLOGY, 2007, 74 (04) :623-638
[7]   Mechanisms for evolving hypervariability: The case of conopeptides [J].
Conticello, SG ;
Gilad, Y ;
Avidan, N ;
Ben-Asher, E ;
Levy, Z ;
Fainzilber, M .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (02) :120-131
[8]   Position-specific codon conservation in hypervariable gene families [J].
Conticello, SG ;
Pilpel, Y ;
Glusman, G ;
Fainzilber, M .
TRENDS IN GENETICS, 2000, 16 (02) :57-59
[9]   Do Vicinal Disulfide Bridges Mediate Functionally Important Redox Transformations in Proteins? [J].
de Araujo, Aline Dantas ;
Herzig, Volker ;
Windley, Monique J. ;
Dziemborowicz, Slawomir ;
Mobli, Mehdi ;
Nicholson, Graham M. ;
Alewood, Paul F. ;
King, Glenn F. .
ANTIOXIDANTS & REDOX SIGNALING, 2013, 19 (16) :1976-1980
[10]  
DeLano W.L., 2002, The PyMOL molecular graphics system