Cytoplasmic proteins of the hsp70/hsc70 family redistribute in cells that have been exposed to stress. As such, the hsp70 Ssa4p of the budding yeast S. cerevisiae accumulates in nuclei when cells are treated with ethanol, whereas classical nuclear import is inhibited under these conditions. The N-terminal domain of Ssa4p, which is lacking a classical NLS, mediates nuclear accumulation upon ethanol exposure. Concentration of the Ssa4p N-terminal segment in nuclei is reversible, as the protein relocates to the cytoplasm when cells recover. Mutant analysis demonstrates that the small GTPase Gsp1p and GTPase-modulating factors are required to accumulate Ssa4p in nuclei upon ethanol stress. Moreover, we have identified the importin-beta family member Nmd5p as the nuclear carrier for Ssa4p. Ethanol treatment significantly increases the formation of import complexes containing Nmd5p and the N-terminal Ssa4p domain. Likewise, docking of the carrier Nmd5p at the nuclear pore is enhanced by ethanol. Furthermore, we show that the stressed-induced nuclear accumulation of Ssa4p depends on signaling through protein kinase C and requires sensors of the cell integrity pathway.