Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis

被引:1
|
作者
Maybank, Philip J. [1 ]
Whiteley, Jonathan P. [1 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
基金
英国工程与自然科学研究理事会;
关键词
Model reduction; Reaction-diffusion; A posteriori; UNCERTAIN PARAMETERS; GLOBAL SENSITIVITY; MODEL-REDUCTION; MEMBRANE; EVOLUTION; DYNAMICS; NEURON;
D O I
10.1016/j.mbs.2013.12.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 50 条
  • [1] REGULARITY ANALYSIS FOR SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    Goudon, Thierry
    Vasseur, Alexis
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (01): : 117 - 142
  • [2] A posteriori analysis of an iterative multi-discretization method for reaction-diffusion systems
    Chaudhry, J. H.
    Estep, D.
    Ginting, V.
    Tavener, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 267 : 1 - 22
  • [3] Analysis of reaction-diffusion systems by the method of linear determining equations
    Schmidt A.V.
    Computational Mathematics and Mathematical Physics, 2007, 47 (2) : 249 - 261
  • [4] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [5] Automatic control problems for reaction-diffusion systems
    C. Cavaterra
    F. Colombo
    Journal of Evolution Equations, 2002, 2 : 241 - 273
  • [6] Automatic control problems for reaction-diffusion systems
    Cavaterra, C
    Colombo, F
    JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (02) : 241 - 273
  • [7] PARTICLE-SYSTEMS AND REACTION-DIFFUSION EQUATIONS
    DURRETT, R
    NEUHAUSER, C
    ANNALS OF PROBABILITY, 1994, 22 (01): : 289 - 333
  • [8] SOLUTIONS TO SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    BULLETIN OF MATHEMATICAL BIOLOGY, 1975, 37 (03) : 277 - 289
  • [9] Reaction-Diffusion Equations with Applications to Economic Systems
    Ganguly, Srinjoy
    Neogi, Upasana
    Chakrabarti, Anindya S.
    Chakraborti, Anirban
    ECONOPHYSICS AND SOCIOPHYSICS: RECENT PROGRESS AND FUTURE DIRECTIONS, 2017, : 131 - 144
  • [10] Amplitude equations and chemical reaction-diffusion systems
    Ipsen, M
    Hynne, F
    Sorensen, PG
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07): : 1539 - 1554