UNIVERSALITY OF COVARIANCE MATRICES

被引:73
作者
Pillai, Natesh S. [1 ]
Yin, Jun [2 ]
机构
[1] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Covariance matrix; Marcenko-Pastur law; universality; Tracy-Widom law; Dyson Brownian motion; LOCAL EIGENVALUE STATISTICS; BULK UNIVERSALITY; SPECTRAL STATISTICS; SMALLEST EIGENVALUE; LIMIT;
D O I
10.1214/13-AAP939
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we prove the universality of covariance matrices of the form H-NxN=X+ X where X is an M x N rectangular matrix with independent real valued entries x(ij) satisfying Ex(ij)=0 and Ex(ij)(2)=1/M, N, M ->infinity. Furthermore it is assumed that these entries have sub-exponential tails or sufficiently high number of moments. We will study the asymptotics in the regime N/M=d(N) is an element of (0,infinity), lim(N ->infinity) d(N)not equal 0, infinity. Our main result is the edge universality of the sample covariance matrix at both edges of the spectrum. In the case lim(N ->infinity)d(N)=1, we only focus on the largest eigenvalue. Our proof is based on a novel version of the Green function comparison theorem for data matrices with dependent entries. En route to proving edge universality, we establish that the Stieltjes transform of the empirical eigenvalue distribution of H is given by the Marcenko-Pastur law uniformly up to the edges of the spectrum with an error of order (N-eta)(-1) where eta is the imaginary part of the spectral parameter in the Stieltjes transform. Combining these results with existing techniques we also show bulk universality of covariance matrices. All our results hold for both real and complex valued entries.
引用
收藏
页码:935 / 1001
页数:67
相关论文
共 40 条
[1]  
[Anonymous], 2006, P INT CONG MATH EUR, DOI DOI 10.4171/022-1/13
[2]   A NOTE ON THE LARGEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
SILVERSTEIN, JW ;
YIN, YQ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 26 (02) :166-168
[3]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[4]   Tracy-Widom law for the extreme eigenvalues of sample correlation matrices [J].
Bao, Zhigang ;
Pan, Guangming ;
Zhou, Wang .
ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17
[5]   Universality of local eigenvalue statistics for some sample covariance matrices [J].
Ben Arous, G ;
Péché, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1316-1357
[6]   Local circular law for random matrices [J].
Bourgade, Paul ;
Yau, Horng-Tzer ;
Yin, Jun .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :545-595
[7]   Local Marchenko-Pastur law at the hard edge of sample covariance matrices [J].
Cacciapuoti, Claudio ;
Maltsev, Anna ;
Schlein, Benjamin .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
[8]  
Dieng M, 2011, CRM SER MATH PHYS, P443, DOI 10.1007/978-1-4419-9514-8_7
[9]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[10]   THE DISTRIBUTION AND MOMENTS OF THE SMALLEST EIGENVALUE OF A RANDOM MATRIX OF WISHART TYPE [J].
EDELMAN, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 159 :55-80