The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy

被引:63
作者
Faddegon, Bruce A. [1 ]
Kawrakow, Iwan [2 ]
Kubyshin, Yuri [3 ]
Perl, Joseph [4 ]
Sempau, Josep [3 ]
Urban, Laszlo
机构
[1] UCSF Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA
[2] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[3] Univ Politecn Cataluna, Inst Tecn Energet, E-08028 Barcelona, Spain
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
基金
美国国家卫生研究院;
关键词
MULTIPLE-SCATTERING; LINEAR-ACCELERATOR; PHOTON BEAMS; TRANSPORT; ENERGY; DOSIMETRY; THERAPY; FIELDS; TARGET;
D O I
10.1088/0031-9155/54/20/008
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three widely used Monte Carlo systems were benchmarked against recently published measurements of the angular distribution of 13 MeV and 20 MeV electrons scattered from foils of different atomic numbers and thicknesses. Source and geometry were simulated in detail to calculate electron fluence profiles 118.2 cm from the exit window. Results were compared to the measured fluence profiles and the characteristic angle where the fluence drops to 1/e of its maximum value. EGSnrc and PENELOPE results, on average, agreed with measurement within 1 standard deviation experimental uncertainty, with EGSnrc estimating slightly lower scatter than measurement and PENELOPE slightly higher scatter. Geant4.9.2 overestimated the characteristic angle for the lower atomic number foils by as much as 10%. Retuning of the scatter distributions in Geant4 led to a much better agreement with measurement, close to that achieved with the other codes. The 3% differences from measurement seen with all codes for at least some of the foils would result in clinically significant errors in the fluence profiles (2%/4 mm), given accurate knowledge of the electron source and treatment head geometry used in radiotherapy. Further improvement in simulation accuracy is needed to achieve 1%/1 mm agreement with measurement for the full range of beam energies, foil atomic number and thickness used in radiotherapy. EGSnrc would achieve this accuracy with an increase in thickness of the mylar sheets in the monitor chamber, PENELOPE with a decrease in thickness.
引用
收藏
页码:6151 / 6163
页数:13
相关论文
共 33 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams [J].
Almond, PR ;
Biggs, PJ ;
Coursey, BM ;
Hanson, WF ;
Huq, MS ;
Nath, R ;
Rogers, DWO .
MEDICAL PHYSICS, 1999, 26 (09) :1847-1870
[3]   The scattering of muons in low-Z materials [J].
Attwood, D. ;
Bell, P. ;
Bull, S. ;
McMahon, T. ;
Wilson, J. ;
Fernow, R. ;
Gruber, P. ;
Jamdagm, A. ;
Long, K. ;
McKigney, E. ;
Savage, P. ;
Curtis-Rouse, M. ;
Edgecock, T. R. ;
Ellis, M. ;
Lidbury, J. ;
Murray, W. ;
Norton, P. ;
Peach, K. ;
Ishida, K. ;
Matsuda, Y. ;
Nagamine, K. ;
Nakamura, S. ;
Marshall, G. M. ;
Benveniste, S. ;
Cline, D. ;
Fukui, Y. ;
Lee, K. ;
Pischalnikov, Y. ;
Holmes, S. ;
Bogacz, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 251 (01) :41-55
[4]  
Berger M.J., 1988, MONTE CARLO TRANSPOR, V38, P21, DOI DOI 10.1007/978-1-4613-1059-4_2
[5]   Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning [J].
Chetty, Indrin J. ;
Curran, Bruce ;
Cygler, Joanna E. ;
DeMarco, John J. ;
Ezzell, Gary ;
Faddegon, Bruce A. ;
Kawrakow, Iwan ;
Keall, Paul J. ;
Liu, Helen ;
Ma, C. -M. Charlie ;
Rogers, D. W. O. ;
Seuntjens, Jan ;
Sheikh-Bagheri, Daryoush ;
Siebers, Jeffrey V. .
MEDICAL PHYSICS, 2007, 34 (12) :4818-4853
[6]   MULTICONFIGURATION RELATIVISTIC DIRAC-FOCK PROGRAM [J].
DESCLAUX, JP .
COMPUTER PHYSICS COMMUNICATIONS, 1975, 9 (01) :31-45
[7]   Comparison of beam characteristics of a gold x-ray target and a tungsten replacement target [J].
Faddegon, B ;
Egley, B ;
Steinberg, T .
MEDICAL PHYSICS, 2004, 31 (01) :91-97
[8]   The flatness of Siemens linear accelerator x-ray fields [J].
Faddegon, BA ;
O'Brien, P ;
Mason, DLD .
MEDICAL PHYSICS, 1999, 26 (02) :220-228
[9]   Monte Carlo simulation of large electron fields [J].
Faddegon, Bruce A. ;
Perl, Joseph ;
Asai, Makoto .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (05) :1497-1510
[10]   Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target [J].
Faddegon, Bruce A. ;
Wu, Vincent ;
Pouliot, Jean ;
Gangadharan, Bijumon ;
Bani-Hashemi, Ali .
MEDICAL PHYSICS, 2008, 35 (12) :5777-5786