Modified Gaussian likelihood estimators for ARMA models on Zd

被引:3
作者
Dimitriou-Fakalou, Chrysoula [1 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
关键词
Auto-regressive moving-average model; Edge-effect; Maximum likelihood estimation; Second-order properties; PARAMETER-ESTIMATION; TIME-SERIES; LATTICE;
D O I
10.1016/j.spa.2009.09.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For observations from ail auto-regressive moving-average process on any number of dimensions, we propose a modification of the Gaussian likelihood, which when maximized corrects the edge-effects and fixes the order of the bias for the estimators derived. We show that the new estimators are not only consistent but also asymptotically normal for any dimensionality. A classical one-dimensional, time series result for the variance matrix is established on any number of dimensions and guarantees the efficiency of the estimators, if the original process is Gaussian. We have followed a model-based approach and we have used finite numbers for the corrections per dimension, which are especially made for the case of the autoregressive moving-average models of fixed order. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4149 / 4175
页数:27
相关论文
共 12 条
[1]   STABILITY OF MULTIDIMENSIONAL DIGITAL-FILTERS [J].
ANDERSON, BD ;
JURY, EI .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, AS21 (02) :300-304
[2]   STATISTICAL-ANALYSIS OF NON-LATTICE DATA [J].
BESAG, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1975, 24 (03) :179-195
[3]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[4]  
Brockwell PJ., 1991, TIME SERIES THEORY M
[5]  
CRESSIC NAC, 1993, STAT SPATIAL DATA
[6]  
DAHLHAUS R, 1987, BIOMETRIKA, V74, P877
[7]  
Dimitriou-Fakalou C., 2009, STAT METHODOL, V6, P120
[8]   PARAMETER-ESTIMATION FOR A STATIONARY PROCESS ON A D-DIMENSIONAL LATTICE [J].
GUYON, X .
BIOMETRIKA, 1982, 69 (01) :95-105
[9]   ASYMPTOTIC THEORY OF LINEAR TIME-SERIES MODELS [J].
HANNAN, EJ .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) :130-145
[10]  
WHITTLE P, 1954, BIOMETRIKA, V41, P434