Inequalities for eigenvalues of compact operators in a Hilbert space

被引:5
作者
Gil, Michael [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
关键词
Compact operators; Hilbert space; eigenvalues; singular values; HANKEL-OPERATORS; CLASS MEMBERSHIP;
D O I
10.1142/S0219199715500224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a compact operator in a separable Hilbert space and lambda(k)(A) (k = 1, 2,...) be the eigenvalues of A with their multiplicities enumerated in the non-increasing order of their absolute values. We prove the inequality (Sigma(m)(k=1) vertical bar lambda(k)(A)vertical bar(2) )(2) <= 2 Sigma(1 <= k< j <= m) s(k)(2) (A)s(j)(2) (A) + Sigma(m)(k=1) s(k)(2)(A(2)) (m = 2, 3,...), where s(k)(A) and s(k)(A(2)) are the singular values of A and of A(2), respectively, enumerated with their multiplicities in the non-increasing order. This result refines the classical inequality Sigma(m)(k=1) vertical bar lambda(k)(A)vertical bar(2) <= Sigma(m)(k=1) s(k)(2) (A) (m = 1, 2, 3,...).
引用
收藏
页数:5
相关论文
共 8 条
[1]  
Gil M. I., 2007, J INEQUAL PURE APPL, V8
[2]   Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators [J].
Gil, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (09) :3500-3506
[3]  
Gokhberg I. Ts., 1969, Introduction to the Theory of Linear Nonselfadjoint Operators
[4]   Continuity and Schatten-von!Neumann p-class membership of Hankel operators with anti-holomorphic symbols on (generalized) Fock spaces [J].
Knirsch, W ;
Schneider, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :403-414
[5]  
Sigg M., 2005, J INEQUAL PURE APPL, V6
[6]   Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces [J].
Toft, Joachim .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 30 (02) :169-209
[7]  
WONG MW, 2004, ARCH INEQUAL APPL, V2, P391
[8]   On the Schatten class membership of Hankel operators on the unit ball [J].
Xia, JB .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (03) :913-928