Wright functions as scale-invariant solutions of the diffusion-wave equation

被引:195
作者
Gorenflo, R
Luchko, Y [1 ]
Mainardi, F
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
[2] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sezione Bologna, I-40126 Bologna, Italy
关键词
Wright functions; scale-invariant solutions; diffusion-wave equation; Erdelyi-Kober operators;
D O I
10.1016/S0377-0427(00)00288-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order alpha (0 < alpha less than or equal to 2). Using the similarity method and the method of the Laplace transform, it is shown that the scale-invariant solutions of the mixed problem of signalling type for the time-fractional diffusion-wave equation are given in terms of the Wright function in the case 0 < alpha < 1 and in terms of the generalized Wright function in the case 1 < or < 2. The reduced equation for the scale-invariant solutions is given in terms of the Caputo-type modification of the Erdelyi-Kober fractional differential operator. (C) 2000 Elsevier Science B.V. All rights reserved. MSC. 26A33; 33B20; 45J05; 45K05.
引用
收藏
页码:175 / 191
页数:17
相关论文
共 44 条
[1]  
[Anonymous], 1995, TRANSFORM METHODS SP
[2]  
[Anonymous], REND FIS ACC LINCE 9
[3]  
[Anonymous], ANN GEOFISICA
[4]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[5]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[6]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[7]  
Caputo M., 1969, Elasticitae dissipazione
[8]  
Djrbashian M.M., 1993, Harmonic Analysis and Boundary Value Problems in the Complex Domain
[9]  
Engler H., 1997, Differ. Integral Equ, V10, P815
[10]  
FUJITA Y, 1990, OSAKA J MATH, V27, P309