Mediterranean vegetation analysis by multi-temporal satellite sensor data

被引:48
作者
Grignetti, A [1 ]
Salvatori, R [1 ]
Casacchia, R [1 ]
Manes, F [1 ]
机构
[1] PROGRAMMA ANTARTIDE, CNR IIA, I-00159 ROME, ITALY
关键词
D O I
10.1080/014311697218430
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A mediterranean vegetated coastal area has been classified on the basis of multi-temporal TM images and accurate field data. The latter was revealed to be particularly important due to the complexity of the area in terms of coverage degree, height structure of living vegetation and the occurrence of under-storey species. The recognition and classification of the different coenosis has taken into account that the spectral characteristics of vegetation depends on the season and on local climatic conditions. A major improvement in the spatial resolution of spectral data has been obtained by merging TM and SPOT-P by a RGB-IHS transformation that allowed an overall accuracy in the classification of 85 per cent to be achieved.
引用
收藏
页码:1307 / 1318
页数:12
相关论文
共 50 条
[21]   Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral-directional radiometric data [J].
Mousivand, Alijafar ;
Menenti, Massimo ;
Gorte, Ben ;
Verhoef, Wout .
REMOTE SENSING OF ENVIRONMENT, 2015, 158 :311-330
[22]   Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation [J].
Wakulinska, Martyna ;
Marcinkowska-Ochtyra, Adriana .
REMOTE SENSING, 2020, 12 (17)
[23]   DOWNSCALING VEGETATION FRACTION BY FUSING MULTI-TEMPORAL MODIS AND LANDSAT DATA [J].
Wang, Jinying ;
Wang, Hongyan ;
Li, Xiaosong .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, :757-760
[24]   Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry [J].
Bovenga, Fabio ;
Belmonte, Antonella ;
Refice, Alberto ;
Pasquariello, Guido ;
Nutricato, Raffaele ;
Nitti, Davide O. ;
Chiaradia, Maria T. .
SENSORS, 2018, 18 (05)
[25]   Multi-temporal Satellite Image Analysis Using Unsupervised Techniques [J].
Arvind, C. S. ;
Vanjare, Ashoka ;
Omkar, S. N. ;
Senthilnath, J. ;
Mani, V. ;
Diwakar, P. G. .
ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 2, 2013, 177 :757-+
[26]   Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data [J].
Xiao, XM ;
Boles, S ;
Liu, JY ;
Zhuang, DF ;
Liu, ML .
REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) :335-348
[27]   Relationships analysis of land surface temperature with vegetation indicators and impervious surface fraction by fusing multi-temporal and multi-sensor remotely sensed data [J].
Huang, Liwen ;
Shen, Huanfeng ;
Wu, Penghai ;
Zhang, Liangpei ;
Zeng, Chao .
2015 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2015,
[28]   Forest landscape connectivity change analysis in the Yangtze River basin by multi-temporal satellite data [J].
Huang, Pujiang ;
Du, Fengjiao ;
Yang, Shuo ;
Liu, Chang .
INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2016, 45 (12) :1645-1651
[29]   Multi-temporal analysis of PAL images for the study of vegetation in South America [J].
Julien, Y. ;
Sobrino, J. A. ;
Morales, L. .
REVISTA DE TELEDETECCION, 2007, (27) :17-26
[30]   Vegetation structure and greenness in Central Africa from Modis multi-temporal data [J].
Gond, Valery ;
Fayolle, Adeline ;
Pennec, Alexandre ;
Cornu, Guillaume ;
Mayaux, Philippe ;
Camberlin, Pierre ;
Doumenge, Charles ;
Fauvet, Nicolas ;
Gourlet-Fleury, Sylvie .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1625)