The Spectrum of the Martin-Morales-Nadirashvili Minimal Surfaces Is Discrete

被引:7
作者
Bessa, G. Pacelli [1 ]
Jorge, Luquesio P. [1 ]
Montenegro, J. Fabio [1 ]
机构
[1] Univ Fed Ceara, Dept Math, BR-60455760 Fortaleza, Ceara, Brazil
关键词
Proper bounded minimal submanifolds; Discrete spectrum; Essential spectrum; PURELY CONTINUOUS-SPECTRUM; RIEMANNIAN-MANIFOLDS; NEGATIVE CURVATURE;
D O I
10.1007/s12220-009-9101-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the spectrum of a complete submanifold properly immersed into a ball of a Riemannian manifold is discrete, provided the norm of the mean curvature vector is sufficiently small. In particular, the spectrum of a complete minimal surface properly immersed into a ball of R(3) is discrete. This gives a positive answer to a question of Yau (Asian J. Math. 4: 235-278, 2000).
引用
收藏
页码:63 / 71
页数:9
相关论文
共 25 条
[1]   The mean curvature of cylindrically bounded submanifolds [J].
Alias, Luis J. ;
Bessa, G. Pacelli ;
Dajczer, Marcos .
MATHEMATISCHE ANNALEN, 2009, 345 (02) :367-376
[2]  
Baider A, 1979, J DIFFER GEOM, V14, P41
[3]  
BARTA J., 1937, CR HEBD ACAD SCI, V204, P472
[4]   An extension of Barta's Theorem and geometric applications [J].
Bessa, G. Pacelli ;
Montenegro, J. Fabio .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) :345-362
[5]   NEGATIVE CURVATURE AND EMBEDDED EIGENVALUES [J].
DONNELLY, H .
MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (02) :301-308
[6]   RIEMANNIAN-MANIFOLDS WHOSE LAPLACIANS HAVE PURELY CONTINUOUS-SPECTRUM [J].
DONNELLY, H ;
GAROFALO, N .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :143-161
[7]   PURE POINT SPECTRUM AND NEGATIVE CURVATURE FOR NONCOMPACT MANIFOLDS [J].
DONNELLY, H ;
LI, P .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (03) :497-503
[8]  
ESCOBAR E, 1985, COMM PARTIAL DIFFER, V11, P63
[9]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[10]   Discreteness of the Spectrum of the Laplacian and Stochastic Incompleteness [J].
Harmer, Mark .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (02) :358-372