Gauge field theories with covariant star-product

被引:5
作者
Chaichian, M. [1 ,2 ]
Tureanu, A. [1 ,2 ]
Zet, G. [3 ]
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Gh Asachi Tech Univ, Dept Phys, Iasi 700050, Romania
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2009年 / 07期
基金
芬兰科学院;
关键词
Non-Commutative Geometry; Gauge Symmetry; STANDARD MODEL; SYMMETRY; QUANTIZATION; ALGEBRA; GRAVITY; TWIST;
D O I
10.1088/1126-6708/2009/07/084
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A noncommutative gauge theory is developed using a covariant star-product between differential forms defined on a symplectic manifold, considered as the space-time. It is proven that the field strength two-form is gauge covariant and satisfies a deformed Bianchi identity. The noncommutative Yang-Mills action is defined using a gauge covariant metric on the space-time and its gauge invariance is proven up to the second order in the noncommutativity parameter.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Comments on noncommutative gravity [J].
Alvarez-Gaume, Luis ;
Meyer, Frank ;
Vazquez-Mozo, Miguel A. .
NUCLEAR PHYSICS B, 2006, 753 (1-2) :92-117
[2]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[3]   Twisted gauge theories [J].
Aschieri, Paolo ;
Dimitrijevic, Marija ;
Meyer, Frank ;
Schraml, Stefan ;
Wess, Julius .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (01) :61-71
[4]   Construction of gauge theories on curved noncommutative spacetime [J].
Behr, W ;
Sykora, A .
NUCLEAR PHYSICS B, 2004, 698 (03) :473-502
[5]   Noncommutative scalar field coupled to gravity [J].
Bertolami, O ;
Guisado, L .
PHYSICAL REVIEW D, 2003, 67 (02)
[6]   The standard model on non-commutative space-time [J].
Calmet, X ;
Jurco, B ;
Schupp, P ;
Wess, J ;
Wohlgenannt, M .
EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02) :363-376
[7]   A path integral approach to the Kontsevich quantization formula [J].
Cattaneo, AS ;
Felder, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) :591-611
[8]   Noncommutative fields and actions of twisted Poincare algebra [J].
Chaichian, M. ;
Kulish, P. P. ;
Tureanu, A. ;
Zhang, R. B. ;
Zhang, Xiao .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
[9]   Twist as a symmetry principle and the noncommutative gauge theory formulation [J].
Chaichian, M. ;
Tureanu, A. ;
Zet, G. .
PHYSICS LETTERS B, 2007, 651 (04) :319-323
[10]   Twist symmetry and gauge invariance [J].
Chaichian, M. ;
Tureanu, A. .
PHYSICS LETTERS B, 2006, 637 (03) :199-202