Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants

被引:145
作者
Du, Ningjie [1 ,2 ]
Liu, Ying [1 ,2 ]
Li, Qiuju [1 ,2 ]
Miao, Wei [1 ,2 ]
Wang, Dandan [1 ,2 ]
Mao, Shun [1 ,2 ]
机构
[1] Tongji Univ, Shanghai East Hosp, Biomed Multidisciplinary Innovat Res Inst, Coll Environm Sci & Engn,State Key Lab Pollut Con, 1239 Siping Rd, Shanghai 200092, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
国家重点研发计划;
关键词
Single-atom iron; Peroxydisulfate oxidation; Singlet oxygen; Chloramphenicol; Organic contaminant removal; ZERO-VALENT IRON; PEROXYMONOSULFATE ACTIVATION; HETEROGENEOUS CATALYSIS; SELECTIVE DEGRADATION; BISPHENOL-A; CHLORAMPHENICOL; OXIDATION; NANOPARTICLES; PERSULFATE; NANOTUBES;
D O I
10.1016/j.cej.2020.127545
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Single-atom catalysts have drawn increasing attention in advanced oxidation due to their unique structure and significant promise in heterogeneous catalysis. Herein, single-atom iron anchored on nitrogen-doped carbon (SAFe-N-C) was synthesized with iron phthalocyanine (FePc) and metal-organic framework (ZIF-8). With thermal treatment and acid leaching, atomically-dispersed Fe-Nx sites were successfully formed on the surface of N-C support derived from ZIF-8. The prepared catalyst was demonstrated to activate peroxydisulfate (PDS) for chloramphenicol (CAP) degradation. Compared with N-C, the SAFe-N-C shows 6 times enhanced removal efficiency (from 15.3% to 93.1%) for CAP. Moreover, the catalyst shows high catalytic activity in a wide pH range of 5 to 9 and good resistance to inorganic anions, in which a singlet oxygen-dominated process is found. This study reveals the role of single-atom site in singlet oxygen evolution and offers a new catalytic approach for selective removal of organic pollutants in complex water matrix.
引用
收藏
页数:12
相关论文
共 74 条
[1]   Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance [J].
Ahn, Yong-Yoon ;
Bae, Hyokwan ;
Kim, Hyoung-Il ;
Kim, Sang-Hoon ;
Kim, Jae-Hong ;
Lee, Seung-Geol ;
Lee, Jaesang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 241 :561-569
[2]   High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C3N4) for Highly Efficient Catalytic Advanced Oxidation Processes [J].
An, Sufeng ;
Zhang, Guanghui ;
Wang, Tingwen ;
Zhan, Wenna ;
Li, Keyan ;
Song, Chunshan ;
Miller, Jeffrey T. ;
Miao, Shu ;
Wang, Junhu ;
Guo, Xinwen .
ACS NANO, 2018, 12 (09) :9441-9450
[3]   Occurrence of Halogenated Transformation Products of Selected Pharmaceuticals and Personal Care Products in Secondary and Tertiary Treated Wastewaters from Southern California [J].
Bulloch, Daryl N. ;
Nelson, Eric D. ;
Carr, Steve A. ;
Wissman, Chris R. ;
Armstrong, Jeffrey L. ;
Schlenk, Daniel ;
Larive, Cynthia K. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (04) :2044-2051
[4]   Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Xing, Lili ;
Xu, Kun ;
Tong, Yun ;
Xie, Hui ;
Zhang, Lidong ;
Yan, Wensheng ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) :610-614
[5]   Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J].
Chen, W ;
Westerhoff, P ;
Leenheer, JA ;
Booksh, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (24) :5701-5710
[6]  
Chen X., 2019, ACS APPL MAT INTERFA, V11
[7]  
Chung D.Y., 2015, ADV ENERGY MATER, V5, P8
[8]   Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst [J].
Chung, Hoon T. ;
Cullen, David A. ;
Higgins, Drew ;
Sneed, Brian T. ;
Holby, Edward F. ;
More, Karren L. ;
Zelenay, Piotr .
SCIENCE, 2017, 357 (6350) :479-483
[9]   Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering [J].
Cravillon, Janosch ;
Nayuk, Roman ;
Springer, Sergej ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2130-2141
[10]  
DENG D, 2015, SCI ADV, V1, P9