Residual dipolar coupling constants and structure determination of large DNA duplexes

被引:11
作者
Mauffret, O
Tevanian, G
Fermandjian, S
机构
[1] Inst Gustave Roussy, CNRS, UMR 8532, Dept Biol & Pharmacol Struct, F-94800 Villejuif, France
[2] ENS Cachan, F-94223 Cachan, France
关键词
DNA; NMR; residual dipolar couplings; simulations; structures;
D O I
10.1023/A:1021645131882
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several NMR works have shown that long-range information provided by residual dipolar couplings (RDCs) significantly improve the global structure definition of RNAs and DNAs. Most of these are based on the use of a large set of RDCs, the collect of which requires samples labeled with C-13, N-15, and sometimes, H-2. Here, we carried out torsion-angle dynamics simulations on a non-self complementary DNA fragment of 17 base-pairs, d(GGAAAATATCTAGCAGT).(ACTGCTAGAGATTTTCC). This reproduces the U5 LTR distal end of the HIV-1 cDNA that contains the enzyme integrase binding site. Simulations aimed at evaluating the impact of RDCs on the structure definition of long oligonucleotides, were performed in incorporating (i) nOe-distances at both < 4.5 &ANGS; and < 5 Angstrom; (ii) a small set of C-13-H-1 RDCs, easily detectable at the natural abundance, and (iii) a larger set of RDCs only accessible through the C-13 labeling of DNAs. Agreement between a target structure and a simulated structure was measured in terms of precision and accuracy. Results allowed to define conditions in which accurate DNA structures can be determined. We confirmed the strong impact of RDCs on the structure determination, and, above all, we found that a small set of RDC constraints (ca. 50) detectable at the natural abundance is sufficient to accurately derive the global and local DNA duplex structures when used in conjunction with nOe-distances < 5 &ANGS;.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 35 条
[1]   How accurately and precisely can RNA structure be determined by NMR? [J].
Allain, FHT ;
Varani, G .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (02) :338-351
[2]   Refinement of the structure of protein-RNA complexes by residual dipolar coupling analysis [J].
Bayer, P ;
Varani, L ;
Varani, G .
JOURNAL OF BIOMOLECULAR NMR, 1999, 14 (02) :149-155
[3]   ITERATIVE PROCEDURE FOR STRUCTURE DETERMINATION FROM PROTON PROTON NOES USING A FULL RELAXATION MATRIX APPROACH - APPLICATION TO A DNA OCTAMER [J].
BOELENS, R ;
KONING, TMG ;
VANDERMAREL, GA ;
VANBOOM, JH ;
KAPTEIN, R .
JOURNAL OF MAGNETIC RESONANCE, 1989, 82 (02) :290-308
[4]   MARDIGRAS - A PROCEDURE FOR MATRIX ANALYSIS OF RELAXATION FOR DISCERNING GEOMETRY OF AN AQUEOUS STRUCTURE [J].
BORGIAS, BA ;
JAMES, TL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 87 (03) :475-487
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]  
BRUTSCHER B, 1998, J AM CHEM SOC, V120, P11485
[7]   A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information [J].
Clore, GM ;
Gronenborn, AM ;
Bax, A .
JOURNAL OF MAGNETIC RESONANCE, 1998, 133 (01) :216-221
[8]   Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude [J].
Clore, GM ;
Gronenborn, AM ;
Tjandra, N .
JOURNAL OF MAGNETIC RESONANCE, 1998, 131 (01) :159-162
[9]   New methods of structure refinement for macromolecular structure determination by NMR [J].
Clore, GM ;
Gronenborn, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :5891-5898
[10]   EXACT VS APPROXIMATE METHODS FOR SIMULATION OF 3D NOE-NOE SPECTRA [J].
DONNE, DG ;
GOZANSKY, EK ;
GORENSTEIN, DG .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1995, 106 (02) :156-163