ON SCALE-INVARIANT BOUNDS FOR THE GREEN'S FUNCTION FOR SECOND-ORDER ELLIPTIC EQUATIONS WITH LOWER-ORDER COEFFICIENTS AND APPLICATIONS

被引:6
|
作者
Sakellaris, Georgios [1 ]
机构
[1] Univ Autenorna Barcelona, Dept Math, Barcelona, Spain
来源
ANALYSIS & PDE | 2021年 / 14卷 / 01期
关键词
Green's function; fundamental solution; lower-order coefficients; pointwise bounds; Lorentz bounds; maximum principle; Moser-type estimate; CONSTANT IMPROVEMENT; SOBOLEV; DEGENERATE; OPERATORS; SPACES;
D O I
10.2140/apde.2021.14.251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct Green's functions for elliptic operators of the form Lu = -div(A del u + bu) + c del u + du in domains Omega subset of R-n, under the assumption d >= div b or d >= div c. We show that, in the setting of Lorentz spaces, the assumption b - c is an element of L-n,L-1(Omega) is both necessary and optimal to obtain pointwise bounds for Green's functions. We also show weak-type bounds for the Green's function and its gradients. Our estimates are scale-invariant and hold for general domains Omega subset of R-n. Moreover, there is no smallness assumption on the norms of the lower-order coefficients. As applications we obtain scale-invariant global and local boundedness estimates for subsolutions to Lu <= -div f + g in the case d >= div c.
引用
收藏
页码:251 / 299
页数:49
相关论文
共 50 条