Ti3Al matrix alloy refined and reinforced by in-situ synthesized SiCw/Nb4C3 core-shell structure

被引:5
作者
Cui, Sen [1 ]
Cui, Chunxiang [1 ]
Kang, Licong [1 ]
Liu, Shuangjin [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Technol, Key Lab New Type Funct Mat Hebei Prov, 8,Rd 1, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Intermetallics; Interface; Metal matrix composites; Microstructure; GAMMA-TIAL ALLOY; MECHANICAL-PROPERTIES; GRAIN-REFINEMENT; MICROSTRUCTURE; COMPOSITES; BEHAVIOR; INOCULANT; STRENGTH; ALUMINUM;
D O I
10.1016/j.jallcom.2020.158423
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hot deformation as a general fabrication method for Titanium-Aluminum alloy could enhance the mechanical properties due to the refining of grain size and lamellar width. Compared with the hot deformation method, here we report a casting strategy in which a Ti3Al matrix alloy was effectively reinforced by in situ ceramic particles meanwhile modified by inoculants. The average lamellar width is refined from about 3300 nm to about 37 nm. Samples exhibit an ultimate compressive strength of 2.76 GPa with a strain of 17.3%. SiC/Nb4C3 core-shell structure was observed in the interface between reinforcement and matrix, and its interface microstructure was studied in detail. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 33 条
[21]   A COMPARISON BETWEEN A SHEAR LAG TYPE MODEL AND AN ESHELBY TYPE MODEL IN PREDICTING THE MECHANICAL-PROPERTIES OF A SHORT FIBER COMPOSITE [J].
TAYA, M ;
ARSENAULT, RJ .
SCRIPTA METALLURGICA, 1987, 21 (03) :349-354
[22]   Advances in the science and technology of carbon nanotubes and their composites: a review [J].
Thostenson, ET ;
Ren, ZF ;
Chou, TW .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (13) :1899-1912
[23]   Hot deformation and dynamic recrystallization behavior of TiAl-based alloy [J].
Tian, Shiwei ;
Jiang, Haitao ;
Guo, Wenqi ;
Zhang, Guihua ;
Zeng, Shangwu .
INTERMETALLICS, 2019, 112
[24]   The elastic behaviors and theoretical tensile strength of γ-TiAl alloy from the first principles calculations [J].
Wang, Jia-Hua ;
Lu, Yong ;
Zhang, Xiao-Lin ;
Shao, Xiao-hong .
INTERMETALLICS, 2018, 101 :1-7
[25]   Nanoparticle-inhibited growth of primary aluminum in Al-10Si alloys [J].
Wang, K. ;
Jiang, H. Y. ;
Jia, Y. W. ;
Zhou, H. ;
Wang, Q. D. ;
Ye, B. ;
Ding, W. J. .
ACTA MATERIALIA, 2016, 103 :252-263
[26]   The microstructure and formation mechanism of core-shell-like TiAl3/Ti2Al20Ce in melt-spun Al-Ti-B-Re grain refiner [J].
Wang, Kui ;
Cui, Chunxiang ;
Wang, Qian ;
Liu, Shuangjin ;
Gu, Cunshuai .
MATERIALS LETTERS, 2012, 85 :153-156
[27]   Refinement of lamellar structures in Ti-Al alloy [J].
Wei, Dai-Xiu ;
Koizumi, Yuichiro ;
Nagasako, Makoto ;
Chiba, Akihiko .
ACTA MATERIALIA, 2017, 125 :81-97
[28]   The grain refinement performance of B-doped TiC on Zr-containing Al alloys [J].
Yang, Huabing ;
Qian, Zhao ;
Zhang, Guojun ;
Nie, Jinfeng ;
Liu, Xiangfa .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 :774-783
[29]   Grain refinement and mechanical properties of Mg-5Li-3Al alloy inoculated by Al-5Ti-1B master alloy [J].
Zhang, Qun ;
Liu, Bin ;
Niu, Zhongyi ;
Zhang, Zhongwu ;
Leng, Zhe .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 619 :152-157
[30]   Investigation of interfacial reaction in SiC fiber reinforced Ti-43Al-9V composites [J].
Zhang, W. ;
Yang, Y. Q. ;
Zhao, G. M. ;
Huang, B. ;
Feng, Z. Q. ;
Luo, X. ;
Li, M. H. ;
Lou, J. H. .
INTERMETALLICS, 2013, 33 :54-59