Uniqueness of selfdual periodic Chern-Simons vortices of topological-type

被引:34
作者
Tarantello, Gabriella [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1007/s00526-006-0062-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In analogy with the abelian Maxwell-Higgs model (cf. Jaffe and Taubes in Vortices and monopoles, 1980) we prove that periodic topological-type selfdual vortex-solutions for the Chern-Simons model of Jackiw-Weinberg [Phys Rev Lett 64:2334-2337, 1990] and Hong et al. Phys Rev Lett 64:2230-2233, 1990 are uniquely determined by the location of their vortex points, when the Chern-Simons coupling parameter is sufficiently small. This result follows by a uniqueness and uniform invertibility property established for a related elliptic problem (see Theorem 3.6 and 3.7).
引用
收藏
页码:191 / 217
页数:27
相关论文
共 34 条
[1]  
AUBIN T, 1998, NONLINEAR PROBLEMS R
[2]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[3]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[4]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[5]  
CHEN X, 1994, P ROY SOC LOND A MAT, P453
[6]   Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory [J].
Choe, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (01)
[7]  
Ding W., 1997, Asian J. Math., V1, P230
[8]   An analysis of the two-vortex case in the Chern-Simons Higgs model [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Wang, GF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (01) :87-97
[9]   Existence results for mean field equations [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Wang, GF .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (05) :653-666
[10]   Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Peng, XW ;
Wang, GF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (02) :383-407