Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding

被引:378
作者
Cao, Wentao [1 ]
Ma, Chang [2 ]
Tan, Shuo [1 ]
Ma, Mingguo [2 ]
Wan, Pengbo [3 ]
Chen, Feng [1 ]
机构
[1] Tongji Univ, Sch Med, Shanghai Peoples Hosp 10, Dept Orthoped, Shanghai 200072, Peoples R China
[2] Beijing Forestry Univ, Engn Res Ctr Forestry Biomass Mat & Bioenergy, Beijing Key Lab Lignocellulos Chem, Coll Mat Sci & Technol, Beijing 100083, Peoples R China
[3] Beijing Univ Chem Technol, Ctr Adv Elastomer Mat, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; Carbon nanotubes; Cellulose nanofibrils; Mechanical property; Electromagnetic interference shielding; FOAM COMPOSITES; GRAPHENE PAPERS; PERFORMANCE; CELLULOSE; MXENE; LIGHTWEIGHT; ABSORPTION; FILM; TRANSPARENT; FABRICATION;
D O I
10.1007/s40820-019-0304-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As the rapid development of portable and wearable devices, different electromagnetic interference (EMI) shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution. However, limited EMI shielding materials are successfully used in practical applications, due to the heavy thickness and absence of sufficient strength or flexibility. Herein, an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process. The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9 +/- 5.0 MPa and a fracture strain of 4.6 +/- 0.2%. Particularly, the paper shows a high electrical conductivity of 2506.6 S m(-1) and EMI shielding effectiveness (EMI SE) of 38.4 dB due to the sandwich structure in improving EMI SE, and the gradient structure on regulating the contributions from reflection and absorption. This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.
引用
收藏
页数:17
相关论文
共 84 条
[1]   Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity [J].
Agnihotri, Nidhi ;
Chakrabarti, Kuntal ;
De, Amitabha .
RSC ADVANCES, 2015, 5 (54) :43765-43771
[2]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[3]   Ultralight MXene-based aerogels with high electromagnetic interference shielding performance [J].
Bian, Renji ;
He, Gaoling ;
Zhi, Weiqiang ;
Xiang, Shanglin ;
Wang, Tingwei ;
Cai, Dongyu .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (03) :474-478
[4]   Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials [J].
Cao, Mao-Sheng ;
Wang, Xi-Xi ;
Zhang, Min ;
Shu, Jin-Cheng ;
Cao, Wen-Qiang ;
Yang, Hui-Jing ;
Fang, Xiao-Yong ;
Yuan, Jie .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
[5]   2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding [J].
Cao, Mao-Sheng ;
Cai, Yong-Zhu ;
He, Peng ;
Shu, Jin-Cheng ;
Cao, Wen-Qiang ;
Yuan, Jie .
CHEMICAL ENGINEERING JOURNAL, 2019, 359 :1265-1302
[6]   The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J].
Cao, Mao-Sheng ;
Song, Wei-Li ;
Hou, Zhi-Ling ;
Wen, Bo ;
Yuan, Jie .
CARBON, 2010, 48 (03) :788-796
[7]   Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion [J].
Cao, Maosheng ;
Wang, Xixi ;
Cao, Wenqiang ;
Fang, Xiaoyong ;
Wen, Bo ;
Yuan, Jie .
SMALL, 2018, 14 (29)
[8]   Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties [J].
Cao, Wen-Tao ;
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Zhang, Yong-Gang ;
Jiang, Ying-Ying ;
Ma, Ming-Guo ;
Chen, Feng .
ACS NANO, 2018, 12 (05) :4583-4593
[9]   Highly Thermostable, Flexible, and Conductive Films Prepared from Cellulose, Graphite, and Polypyrrole Nanoparticles [J].
Chen, Jinghuan ;
Xu, Jikun ;
Wang, Kun ;
Qian, Xueren ;
Sun, Runcang .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (28) :15641-15648
[10]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300