A Spatio-Temporal Fully Convolutional Network for Breast Lesion Segmentation in DCE-MRI

被引:11
作者
Chen, Mingjian [1 ]
Zheng, Hao [1 ]
Lu, Changsheng [2 ]
Tu, Enmei [1 ]
Yang, Jie [1 ]
Kasabov, Nikola [3 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Key Lab Syst Control & Informat Proc, Shanghai, Peoples R China
[3] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland, New Zealand
来源
NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII | 2018年 / 11307卷
关键词
Breast DCE-MRI; Lesion segmentation; Recurrent neural network; Convolutional neural network; Spatio-temporal features;
D O I
10.1007/978-3-030-04239-4_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast lesion segmentation result has a huge impact on the subsequent clinical analysis, and therefore it is of great importance for image-based diagnosis. In this paper, we propose a novel end-to-end network utilizing both spatial and temporal features for fully automated breast lesion segmentation from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Our network is based on a modified convolutional neural network and a recurrent neural network, and it is capable of unearthing rich spatio-temporal features. In our network, a multi-pathway structure and a fusion operator are introduced to acquire 3D information of different tissues, which is helpful for reducing false positive segmentation while boosting accuracy. Experimental results demonstrate that the proposed network produces a significantly more accurate result for lesion segmentation on our evaluation dataset, achieving 0.7588 dice coefficient and 0.7390 positive predictive value.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 28 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]  
Amit Guy, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P594, DOI 10.1007/978-3-319-66179-7_68
[3]   Background parenchymal enhancement: is it just an innocent effect of estrogen on the breast? [J].
Arslan, Gozde ;
Celik, Levent ;
Cubuk, Rahmi ;
Celik, Levent ;
Atasoy, Mehmet Mahir .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2017, 23 (06) :414-419
[4]  
Chollet F., 2015, about us
[5]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[6]  
Huang GL, 2017, IEEE ICC
[7]   A Multistage target tracker in IR image sequences [J].
Huang, Qiao ;
Yang, Jie .
INFRARED PHYSICS & TECHNOLOGY, 2014, 65 :122-128
[8]  
Hubara I, 2018, J MACH LEARN RES, V18
[9]   Automatic Segmentation of Invasive Breast Carcinomas From Dynamic Contrast-Enhanced MRI Using Time Series Analysis [J].
Jayender, Jagadaeesan ;
Chikarmane, Sona ;
Jolesz, Ferenc A. ;
Gombos, Eva .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 40 (02) :467-475
[10]   Nonlocal Means and Optimal Weights for Noise Removal [J].
Jin, Qiyu ;
Grama, Ion ;
Kervrann, Charles ;
Liu, Quansheng .
SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (04) :1878-1920