Stability of abstract thermoelastic systems with inertial terms

被引:11
作者
Fernandez Sare, Hugo D. [1 ]
Liu, Zhuangyi [2 ]
Racke, Reinhard [3 ]
机构
[1] Univ Fed Juiz de Fora, Dept Math, BR-36036900 Juiz De Fora, MG, Brazil
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[3] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
关键词
Exponential stability; Polynomial stability; Fourier law of heat conduction; Cattaneo law of heat conduction; Inertial term; General parameter system; PLATE EQUATIONS; EXPONENTIAL STABILITY; SMOOTHING PROPERTIES; GLOBAL EXISTENCE; DECAY; REGULARITY;
D O I
10.1016/j.jde.2019.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate coupled systems of thermoelastic type in a general abstract form both modeling Fourier and Cattaneo type heat conduction. In particular we take into account a possible inertial term. A complete picture of the regions of exponential stability resp. non-exponential stability for the arising parameters (two from the type of thermoelastic system, one from the inertial term) is given. The regions of loss of exponential stability, while moving from the Fourier to the Cattaneo law, are thus clearly recognized and interestingly large. The polynomial stability in regions of non-exponential stability is also characterized. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:7085 / 7134
页数:50
相关论文
共 50 条
  • [31] On Exponential Stability for Thermoelastic Plates: Comparison and Singular Limits
    J. E. Muñoz Rivera
    R. Racke
    M. Sepúlveda
    O. Vera Villagrán
    Applied Mathematics & Optimization, 2021, 84 : 1045 - 1081
  • [32] Exponential stability for a porous thermoelastic system of type II
    Zhang, Hualei
    MATHEMATICS AND MECHANICS OF SOLIDS, 2023, 28 (09) : 2016 - 2028
  • [33] On uniqueness and stability for a thermoelastic theory
    Quintanilla, R.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (06) : 1387 - 1396
  • [34] Stability for coupled thermoelastic systems with nonlinear localized damping and Wentzell boundary conditions
    Vicente, Andre
    SEMIGROUP FORUM, 2024, 108 (03) : 734 - 758
  • [35] On the Stability of a Thermoelastic Laminated Beam
    Tijani A. Apalara
    Acta Mathematica Scientia, 2019, 39 : 1517 - 1524
  • [36] Existence and stability results of nonlinear swelling equations with logarithmic source terms
    Kafini, Mohammad
    Al-Gharabli, Mohammad M.
    Al-Mahdi, Adel M.
    AIMS MATHEMATICS, 2024, 9 (05): : 12825 - 12851
  • [37] GENERAL CONDITION FOR EXPONENTIAL STABILITY OF THERMOELASTIC BRESSE SYSTEMS WITH CATTANEO'S LAW
    de Lima, Pedro Roberto
    Fernandez Sare, Hugo D.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3575 - 3596
  • [38] ON THE STABILITY OF A THERMOELASTIC LAMINATED BEAM
    Tijani A.APALARA
    Acta Mathematica Scientia, 2019, 39 (06) : 1517 - 1524
  • [39] Non-Homogeneous Thermoelastic Timoshenko Systems
    Alves, M. S.
    Jorge Silva, M. A.
    Ma, T. F.
    Munoz Rivera, J. E.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03): : 461 - 484
  • [40] Non-Homogeneous Thermoelastic Timoshenko Systems
    M. S. Alves
    M. A. Jorge Silva
    T. F. Ma
    J. E. Muñoz Rivera
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 461 - 484