Nonparametric inference via bootstrapping the debiased estimator

被引:13
作者
Cheng, Gang [1 ]
Chen, Yen-Chi [1 ]
机构
[1] Univ Washington, Dept Stat, Box 354322, Seattle, WA 98195 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 01期
关键词
Kernel density estimator; local polynomial regression; level set; inverse regression; confidence set; bootstrap; DIGITAL SKY SURVEY; CONFIDENCE-INTERVALS; CROSS-VALIDATION; INVERSE REGRESSION; LINEAR-REGRESSION; DENSITY; BANDS; CALIBRATION; UNIFORM; CONSISTENCY;
D O I
10.1214/19-EJS1575
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose to construct confidence bands by bootstrapping the debiased kernel density estimator (for density estimation) and the debiased local polynomial regression estimator (for regression analysis). The idea of using a debiased estimator was recently employed by Calonico et al. (2018b) to construct a confidence interval of the density function (and regression function) at a given point by explicitly estimating stochastic variations. We extend their ideas of using the debiased estimator and further propose a bootstrap approach for constructing simultaneous confidence bands. This modified method has an advantage that we can easily choose the smoothing bandwidth from conventional bandwidth selectors and the confidence band will be asymptotically valid. We prove the validity of the bootstrap confidence band and generalize it to density level sets and inverse regression problems. Simulation studies confirm the validity of the proposed confidence bands/sets. We apply our approach to an Astronomy dataset to show its applicability.
引用
收藏
页码:2194 / 2256
页数:63
相关论文
共 101 条
  • [1] Estimating Conditional Average Treatment Effects
    Abrevaya, Jason
    Hsu, Yu-Chin
    Lieli, Robert P.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (04) : 485 - 505
  • [2] The Sixth Data Release of the Sloan Digital Sky Survey
    Adelman-McCarthy, Jennifer K.
    Agueros, Marcel A.
    Allam, Sahar S.
    Prieto, Carlos Allende
    Anderson, Kurt S. J.
    Anderson, Scott F.
    Annis, James
    Bahcall, Neta A.
    Bailer-Jones, C. A. L.
    Baldry, Ivan K.
    Barentine, J. C.
    Bassett, Bruce A.
    Becker, Andrew C.
    Beers, Timothy C.
    Bell, Eric F.
    Berlind, Andreas A.
    Bernardi, Mariangela
    Blanton, Michael R.
    Bochanski, John J.
    Boroski, William N.
    Brinchmann, Jarle
    Brinkmann, J.
    Brunner, Robert J.
    Budavari, Tamas
    Carliles, Samuel
    Carr, Michael A.
    Castander, Francisco J.
    Cinabro, David
    Cool, R. J.
    Covey, Kevin R.
    Csabai, Istvan
    Cunha, Carlos E.
    Davenport, James R. A.
    Dilday, Ben
    Doi, Mamoru
    Eisenstein, Daniel J.
    Evans, Michael L.
    Fan, Xiaohui
    Finkbeiner, Douglas P.
    Friedman, Scott D.
    Frieman, Joshua A.
    Fukugita, Masataka
    Gansicke, Boris T.
    Gates, Evalyn
    Gillespie, Bruce
    Glazebrook, Karl
    Gray, Jim
    Grebel, Eva K.
    Gunn, James E.
    Gurbani, Vijay K.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2008, 175 (02) : 297 - 313
  • [3] [Anonymous], 1996, LOCAL POLYNOMIAL MOD
  • [4] [Anonymous], 1986, Density Estimation for Statistics and Data Analysis
  • [5] [Anonymous], 2018, J AM STAT ASS
  • [6] [Anonymous], 2006, ALL NONPARAMETRIC ST
  • [7] A NOTE ON QUANTILES IN LARGE SAMPLES
    BAHADUR, RR
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03): : 577 - &
  • [8] Bartalotti O, 2017, ADV ECONOMETRICS, V38, P421, DOI 10.1108/S0731-905320170000038018
  • [9] Bayesian smoothing and regression splines for measurement error problems
    Berry, SM
    Carroll, RJ
    Ruppert, D
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 160 - 169
  • [10] Confidence bands for inverse regression models
    Birke, Melanie
    Bissantz, Nicolai
    Holzmann, Hajo
    [J]. INVERSE PROBLEMS, 2010, 26 (11)