Modelling and analysis of fractional Brownian motions

被引:7
作者
Magre, O
Guglielmi, M
机构
[1] Laboratoire d'Automatique de Nantes, U.R.A. C.N.R.S. 823, E.C.N./Université de Nantes, 44072 Nantes Cedex
关键词
D O I
10.1016/S0960-0779(96)00103-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the study of fractional Brownian motion (fbm) and fractional Brownian noises. First, we study the Barnes and Allan model, which is very close to the (fbm). Then, we propose an infinite dimension state model, where each state is the solution of a first order differential equation with time-varying parameter driving by a white noise. The simulation of (fbm) is thus transformed into the solution of the non-stationary model. The problem of discretization of the model is tricky and the solution proposed is an evolutive discretization from a very small initial time. Finally, the performances of this algorithm are shown on the basis of simulations with different fractal dimensions. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:377 / 388
页数:12
相关论文
共 19 条
  • [1] ABRY P, 1993, P IEEE INT C AC SPEE, V3, P237
  • [2] A STATISTICAL MODEL OF FLICKER NOISE
    BARNES, JA
    ALLAN, DW
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02): : 176 - &
  • [3] BRANSLEY MF, 1988, SCI FRACTAL IMAGES
  • [4] HARRIS F, 1990, ADAPTIVE FILTERS USI
  • [5] HURRST HE, 1991, P IEEE, P3557
  • [6] KAALDA J, 1993, FRACTALS, V1, P191
  • [7] Keith Oldham., 1974, FRACTIONAL CALCULUS
  • [8] 1/F NOISE
    KESHNER, MS
    [J]. PROCEEDINGS OF THE IEEE, 1982, 70 (03) : 212 - 218
  • [9] FRACTIONAL BROWNIAN MOTIONS DESCRIBED BY SCALED LANGEVIN EQUATION
    KOYAMA, J
    HARA, H
    [J]. CHAOS SOLITONS & FRACTALS, 1993, 3 (04) : 467 - 480
  • [10] Ljung L., 1983, THEORY PRACTICE RECU