New integral representations of the polylogarithm function

被引:22
作者
Cvijovic, Djurdje [1 ]
机构
[1] Vinca Inst Nucl Sci, Atom Phys Lab, Belgrade 11001, Serbia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2007年 / 463卷 / 2080期
关键词
polylogarithms; integral representation; Riemann's zeta function; Bernoulli polynomials;
D O I
10.1098/rspa.2006.1794
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Maximon has recently given an excellent summary of the properties of the Euler dilogarithm function and the frequently used generalizations of the dilogarithm, the most important among them being the polylogarithm function Li-s(z). The polylogarithm function appears in several fields of mathematics and in many physical problems. We, by making use of elementary arguments, deduce several new integral representations of the polylogarithm Li-s(z) for any complex z for which vertical bar z vertical bar < 1. Two are valid for all complex s, whenever Re s > 1. The other two involve the Bernoulli polynomials and are valid in the important special case where the parameter s is a positive integer. Our earlier established results on the integral representations for the Riemann zeta function zeta(2n+1), n is an element of N, follow directly as corollaries of these representations.
引用
收藏
页码:897 / 905
页数:9
相关论文
共 8 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
Berndt B.C., 1985, Ramanujan's Notebooks: Part 1, P135
[3]   Integral representations of the Riemann zeta function for odd-integer arguments [J].
Cvijovic, D ;
Klinowski, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) :435-439
[4]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, VI
[5]  
Lewin L., 1981, Polylogarithms and associated functions
[6]   The dilogarithm function for complex argument [J].
Maximon, LC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2039) :2807-2819
[7]  
Prudnikov A.P., 1986, INTEGRALS SERIES, V1
[8]  
Prudnikov AP., 1990, Integrals and series