Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature

被引:52
作者
Rhim, Yo-Rhin [2 ]
Zhang, Dajie [1 ]
Rooney, Michael [3 ]
Nagle, Dennis C. [1 ]
Fairbrother, D. Howard [4 ]
Herman, Cila [2 ]
Drewry, David G., III [1 ]
机构
[1] Johns Hopkins Univ, Adv Technol Lab, Baltimore, MD 21211 USA
[2] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[4] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
关键词
ORDERED POROUS CARBON; THERMAL-CONDUCTIVITY; CARBON/CARBON MATERIALS; PYROLYTIC-GRAPHITE; HEAT-CAPACITY; WOOD; DIFFUSIVITY; SPECTROSCOPY; DIFFRACTION; HYDROGEN;
D O I
10.1016/j.carbon.2009.07.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermophysical properties of carbon materials derived from microcrystalline cellulose have been studied under vacuum and compared with earlier measurements conducted under nitrogen to better understand the influence of porosity, composition, microstructure, and atmosphere effects. The effective thermal conductivity in vacuum is lower than that observed in nitrogen primarily due to the conductivity of nitrogen gas. Radiation effects in both atmospheres were determined to be negligible. Reduction of thermal diffusivity in nitrogen was attributed to the effects of nitrogen gas phonon scattering. The trends for electrical and thermal property changes with structure are similar but not identical due to the differences in electron and phonon transport mechanisms. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 51 条
  • [1] Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials
    Bleda-Martinez, M. J.
    Perez, J. M.
    Linares-Solana, A.
    Morallon, E.
    Cazorla-Amoros, D.
    [J]. CARBON, 2008, 46 (07) : 1053 - 1059
  • [2] Thermal conductivity of amorphous carbon thin films
    Bullen, AJ
    O'Hara, KE
    Cahill, DG
    Monteiro, O
    von Keudell, A
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 88 (11) : 6317 - 6320
  • [3] Castle JG., 1956, Proceedings of the First and Second Conferences on Carbon, Buffalo, P13
  • [4] Devpura A, 2001, MICROSCALE THERM ENG, V5, P177
  • [5] Percolation theory applied to the analysis of thermal interface materials in flip-chip technology
    Devpura, A
    Phelan, PE
    Prasher, RS
    [J]. ITHERM 2000: SEVENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, VOL I, PROCEEDINGS, 2000, : 21 - 28
  • [6] Electron spectroscopy of carbon materials: experiment and theory
    El-Barbary, A. A.
    Trasobares, S.
    Ewels, C. P.
    Stephan, O.
    Okotrub, A. V.
    Bulusheva, L. G.
    Fall, C. J.
    Heggie, M. I.
    [J]. EMAG-NANO 2005: IMAGING, ANALYSIS AND FABRICATION ON THE NANOSCALE, 2006, 26 : 149 - +
  • [7] Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application
    Fang, BZ
    Zhou, HS
    Honma, I
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (10) : 4875 - 4880
  • [8] Carbon foams for thermal management
    Gallego, NC
    Klett, JW
    [J]. CARBON, 2003, 41 (07) : 1461 - 1466
  • [9] Garboczi E.J., 2000, CONC SCI ENG, V2, P88
  • [10] Gibson LJ., 1999, Cellular solids, P283