Kinetics of Nanoparticle Targeting by Dissipative Particle Dynamics Simulations

被引:30
|
作者
Djohari, Hadrian [1 ]
Dormidontova, Elena E. [1 ]
机构
[1] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
关键词
DRUG-DELIVERY; POLYMERIC MICELLES; SURFACE-RECEPTORS; BINDING; CANCER; THERAPEUTICS; OPTIMIZATION; SYSTEMS; CELLS;
D O I
10.1021/bm900785c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dissipative particle dynamics simulations are applied to study nanoparticle targeting to a cell surface containing a high concentration of receptors. We found that the normalized number of bound ligands follows an exponential growth function 1 - exp(-t/tau), with the lifetime tau increasing as a function of the binding strength. With increasing binding energy, the shape of die adsorbed nanoparticle becomes ellipsoidal due to a large number of stably bound ligands, most of which are positioned on the nanoparticle periphery. For a low degree of functionalization of homogeneously distributed ligands, the kinetics of nanoparticle attachment slows down due to interference by nonfunctional chains, the overall number of bound ligands at equilibrium decreases, although the stability of ligand attachment increases. Janus-like nanopaticles with functionalized chains positioned on one side of the nanoparticle exhibit more rapid binding to the cell surface with a large equilibrium number of stably bound ligands.
引用
收藏
页码:3089 / 3097
页数:9
相关论文
共 50 条
  • [1] Dissipative particle dynamics simulations of polymersomes
    Ortiz, V
    Nielsen, SO
    Discher, DE
    Klein, ML
    Lipowsky, R
    Shillcock, J
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 243A - 243A
  • [2] Dissipative particle dynamics simulations of polymersomes
    Ortiz, V
    Nielsen, SO
    Discher, DE
    Klein, ML
    Lipowsky, R
    Shillcock, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (37): : 17708 - 17714
  • [3] Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly
    Spaeth, Justin R.
    Kevrekidis, Ioannis G.
    Panagiotopoulos, Athanassios Z.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (18):
  • [4] Dissipative particle dynamics simulation for nanoparticle aggregates
    Ryu, Seol
    Park, Sung Yong
    Schatz, George C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [5] Resolution effects in Dissipative Particle Dynamics simulations
    Boek, ES
    van der Schoot, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1307 - 1318
  • [6] Dissipative particle dynamics simulations of polymer brushes: Comparison with molecular dynamics simulations
    Pal, Sandeep
    Seidel, Christian
    MACROMOLECULAR THEORY AND SIMULATIONS, 2006, 15 (09) : 668 - 673
  • [7] Dissipative particle dynamics simulation of a gold nanoparticle system
    Juan, SCC
    Hua, CY
    Chen, CL
    Sun, XQ
    Xi, HT
    MOLECULAR SIMULATION, 2005, 31 (04) : 277 - 282
  • [8] Dissipative particle dynamics simulations on inversion dynamics of spherical micelles
    Hong, Bingbing
    Qiu, Feng
    Zhang, Hongdong
    Yang, Yuliang
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (24):
  • [9] Reptational dynamics in dissipative particle dynamics simulations of polymer melts
    Nikunen, Petri
    Vattulainen, Ilpo
    Karttunen, Mikko
    PHYSICAL REVIEW E, 2007, 75 (03)
  • [10] Equilibrium chain exchange kinetics in block copolymer micelle solutions by dissipative particle dynamics simulations
    Li, Zhenlong
    Dormidontova, Elena E.
    SOFT MATTER, 2011, 7 (09) : 4179 - 4188