Enabling accurate first-principle calculations of electronic properties with a corrected k . p scheme

被引:12
作者
Berland, Kristian [1 ]
Persson, Clas [1 ]
机构
[1] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, Oslo, Norway
关键词
Electronic structure; Density functional theory; k . p method; Brillouin zone sampling; TOTAL-ENERGY CALCULATIONS; BAND-STRUCTURE; GREENS-FUNCTION; APPROXIMATION; INTERPOLATION; GERMANIUM; EXCHANGE; SILICON; HOLES;
D O I
10.1016/j.commatsci.2017.03.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A computationally inexpensive k . p-based interpolation scheme is developed that can extend the eigen-values and momentum matrix elements of a sparsely sampled k-point grid into a densely sampled one. Dense sampling, often required to accurately describe transport and optical properties of bulk materials, can be demanding to compute, for instance, in combination with hybrid functionals in density functional theory (DFT) or with perturbative expansions beyond DFT such as the GW method. The scheme is based on solving the k . p method and extrapolating from multiple reference k-points. It includes a correction term that reduces the number of empty bands needed and ameliorates band discontinuities. We show how the scheme can be used to generate accurate band structures, density of states, and dielectric functions. Several examples are given, using traditional and hybrid functionals, with Si, TiNiSn, and Cu as model materials. We illustrate that d-electron and semi-core states, which are particular challenging for the k . p method, can be handled with the correction scheme if the sparse grid is not too sparse. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 49 条
[1]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[2]   ABINITIO CALCULATION OF THE MACROSCOPIC DIELECTRIC-CONSTANT IN SILICON [J].
BARONI, S ;
RESTA, R .
PHYSICAL REVIEW B, 1986, 33 (10) :7017-7021
[3]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[4]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[5]   ENERGY-BAND STRUCTURE OF GERMANIUM AND SILICON - K.P METHOD [J].
CARDONA, M ;
POLLAK, FH .
PHYSICAL REVIEW, 1966, 142 (02) :530-&
[6]   COMPARISON OF BRILLOUIN-ZONE INTEGRATION METHODS - COMBINED LINEAR AND QUADRATIC INTERPOLATION [J].
COOKE, JF ;
WOOD, RF .
PHYSICAL REVIEW B, 1972, 5 (04) :1276-&
[7]   CYCLOTRON RESONANCE OF ELECTRONS AND HOLES IN SILICON AND GERMANIUM CRYSTALS [J].
DRESSELHAUS, G ;
KIP, AF ;
KITTEL, C .
PHYSICAL REVIEW, 1955, 98 (02) :368-384
[8]  
Dresselhaus M.S., 2008, Group theory: Application to the physics of condensed matter
[9]   CRYSTALLINE INTERPOLATION WITH APPLICATIONS TO BRILLOUIN-ZONE AVERAGES AND ENERGY-BAND INTERPOLATION [J].
EUWEMA, RN ;
STUKEL, DJ ;
COLLINS, TC ;
DEWITT, JS ;
SHANKLAND, DG .
PHYSICAL REVIEW, 1969, 178 (03) :1419-+
[10]   Linear optical properties in the projector-augmented wave methodology -: art. no. 045112 [J].
Gajdos, M ;
Hummer, K ;
Kresse, G ;
Furthmüller, J ;
Bechstedt, F .
PHYSICAL REVIEW B, 2006, 73 (04)