The stability of N-dimensional quadratic functional inequality in non Archimedean Banach spaces

被引:0
作者
Aribou, Y. [1 ]
Kabbaj, S. [2 ]
机构
[1] Ibn Zohr Univ, Dept Math & Comp Engn IMI, Laayoune Higher Sch Technol, BP 3007, Laayoune, Morocco
[2] Univ Ibn Tofail, Dept Math, Fac Sci, Kenitra, Morocco
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2022年 / 16卷 / 02期
关键词
Non-Archimedean Banach space; Generalized Hyers Ulam stability; Quadratic functional equation; HYERS-ULAM STABILITY; EQUATIONS; MAPPINGS; SET;
D O I
10.1007/s40863-021-00220-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using the direct method, we study the stability of the following inequality: parallel to f(Sigma(n)(i-1) xi) + Sigma(1 <= i<j <= n) f (x(i) - x(j)) - n Sigma(n)(i-1) f(xi)parallel to <=parallel to f (Sigma(n)(i=1) x(i)/n) + Sigma(1 <= i<j <= n) f (x(i) - x(j)/n) - 1/n Sigma(n)(i-1) f(x(i))parallel to in Banach spaces, and the stability of the following inequality: parallel to f(Sigma(n)(i-1) xi/n) + Sigma(1 <= i<j <= n) f (x(i) - x(j)/n) - 1/n Sigma(n)(i-1) f(xi)parallel to(*)<=parallel to f (Sigma(n)(i=1) x(i)) + Sigma(1 <= i<j <= n) f (x(i) - x(j)) - n Sigma(n)(i-1) f(x(i))parallel to(*) , in non-Archimedean Banach spaces with n an integer greater than or equal to 2.
引用
收藏
页码:1382 / 1400
页数:19
相关论文
共 39 条