Symmetry properties of fractional diffusion equations

被引:275
作者
Gazizov, R. K. [1 ]
Kasatkin, A. A. [1 ]
Lukashchuk, S. Yu [1 ]
机构
[1] Ufa State Aviat Tech Univ, Ufa, Russia
关键词
DYNAMICS;
D O I
10.1088/0031-8949/2009/T136/014016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.
引用
收藏
页数:5
相关论文
共 7 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[3]  
Gazi AV, 2007, GLOBAL NEST J, V9, P35
[4]  
Ibragimov N.H., 1994, symmetries, exact solutions and conservation laws, V1-2
[5]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[6]  
Samko SG., 1993, FRACTIONAL INTEGRAL
[7]   Chaos, fractional kinetics, and anomalous transport [J].
Zaslavsky, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 371 (06) :461-580