Partially Supervised Classification for Early Concept Drift Detection

被引:0
作者
Fuccellaro, Maxime [1 ]
Simon, Laurent [1 ]
Zemmari, Akka [1 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, LaBRI,UMR 5800, Talence, France
来源
2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI | 2022年
关键词
Concept Drift; Drift Detection; Semi Supervised; Data Streams; Real Drift;
D O I
10.1109/ICTAI56018.2022.00035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As more and more data is generated and stored, and as longer data streams become available, concept drift detection is becoming crucial for most real world applications. We introduce Partially Supervised Drift Detection, PSDD, a drift detection method based on Decision Trees that does not suppose any knowledge of true class labels during inference. Our approach works in any number of dimensions and is able to distinguish real from virtual drift. We successfully evaluated our method with well established datasets in the drift detection field.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 26 条
  • [1] Baena-Garcia M, 2006, 4 INT WORKSH KNOWL D, V6, P77, DOI DOI 10.1007/978-3-642-23857-4_12
  • [2] Bifet A, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P443
  • [3] An adaptive algorithm for anomaly and novelty detection in evolving data streams
    Bouguelia, Mohamed-Rafik
    Nowaczyk, Slawomir
    Payberah, Amir H.
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (06) : 1597 - 1633
  • [4] Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm
    Brzezinski, Dariusz
    Stefanowski, Jerzy
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (01) : 81 - 94
  • [5] Castellani A, 2021, 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), DOI [10.1109/SSCI50451.2021.9659969, 10.1109/CISS50987.2021.9400210]
  • [6] Cerqueira Vitor, 2020, Discovery Science. 23rd International Conference, DS 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12323), P190, DOI 10.1007/978-3-030-61527-7_13
  • [7] Concept drift detection based on Fisher's Exact test
    de Lima Cabral, Danilo Rafael
    Maior de Barros, Roberto Souto
    [J]. INFORMATION SCIENCES, 2018, 442 : 220 - 234
  • [8] Incremental Learning of Concept Drift in Nonstationary Environments
    Elwell, Ryan
    Polikar, Robi
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (10): : 1517 - 1531
  • [9] Online and Non-Parametric Drift Detection Methods Based on Hoeffding's Bounds
    Frias-Blanco, Isvani
    del Campo-Avila, Jose
    Ramos-Jimenez, Gonzalo
    Morales-Bueno, Rafael
    Ortiz-Diaz, Agustin
    Caballero-Mota, Yaile
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (03) : 810 - 823
  • [10] Gama J, 2004, LECT NOTES ARTIF INT, V3171, P286