Polynomial ergodicity of Markov transition kernels

被引:39
作者
Fort, G
Moulines, E
机构
[1] IMAG, LMC, F-38041 Grenoble 09, France
[2] ENST, Lab Traitement & Commun Informat, F-75634 Paris, France
关键词
Markov chains with discrete parameters; computational methods in Markov chain; mixing; polynomial convergence;
D O I
10.1016/S0304-4149(02)00182-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses quantitative bounds on the convergence rates of Markov chains, under conditions implying polynomial convergence rates. This paper extends an earlier work by Roberts and Tweedie (Stochastic Process. Appl. 80(2) (1999) 211), which provides quantitative bounds for the total variation norm under conditions implying geometric ergodicity. Explicit bounds for the total variation norm are obtained by evaluating the moments of an appropriately defined coupling time, using a set of drift conditions, adapted from an earlier work by Tuominen and Tweedie (Adv. Appl. Probab. 26(3) (1994) 775). Applications of this result are then presented to study the convergence of random walk Hastings Metropolis algorithm for super-exponential target functions and of general state-space models. Explicit bounds for f-ergodicity are also given, for an appropriately defined control function f. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 99
页数:43
相关论文
共 21 条
[1]   Iterated random functions [J].
Diaconis, P ;
Freedman, D .
SIAM REVIEW, 1999, 41 (01) :45-76
[2]  
DOUKHAN P, 1980, CR ACAD SCI A MATH, V291, P61
[3]   V-Subgeometric ergodicity for a Hastings-Metropolis algorithm [J].
Fort, G ;
Moulines, E .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (04) :401-410
[4]   Geometric ergodicity of Metropolis algorithms [J].
Jarner, SF ;
Hansen, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (02) :341-361
[5]  
Jarner SF, 2002, ANN APPL PROBAB, V12, P224
[6]  
KALASHNIKOV VV, 1994, J APPL MATH STOCH AN, V7, P357, DOI DOI 10.1155/S1048953394000304
[7]   SUBEXPONENTIAL DISTRIBUTIONS AND INTEGRATED TAILS [J].
KLUPPELBERG, C .
JOURNAL OF APPLIED PROBABILITY, 1988, 25 (01) :132-141
[8]  
Mengersen KL, 1996, ANN STAT, V24, P101
[9]  
MOKKADEM A, 1987, J TIME SER ANAL, V8, P195
[10]   Bounds on regeneration times and convergence rates for Markov chains [J].
Roberts, GO ;
Tweedie, RL .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 80 (02) :211-229