Highly toxic iodinated phenolic by-products were frequently detected in the oxidative treatment and disinfection of iodine-containing water. Herein, it was found that three model iodinated phenolic disinfection byproducts (DBPs), 2-iodophenol, 4-iodophenol and 2,4,6-triiodophenol, were reactive with HOCl, and the reaction rate constants (at pH 7.0 and 25 degrees C) were 1.86 x10(2), 1.62 x10(2) and 7.5 x10(1) M-1 s(-1), respectively. When HOCl was in excess (HOCl/iodophenol = 40/1, [iodophenol] = 20 mu M), acute toxicity of water sample containing iodophenols could be largely eliminated (> 85%), with the conversion of iodophenols into stable and non-toxic iodate (IO3-) and iodinated and chlorinated aliphatic DBPs. Besides IO3-, seven kinds of aromatic intermediate products including iodophenols, chloroiodophenols, iodoquinones, chloroiodoquinones, chloroquinones, chlorophenols, and coupling products were detected. C-I bond of iodophenols was cleaved in the reaction and the resulted aromatic products were further transformed into chlorinated aliphatic DBPs [trichloromethane (TCM), trichloroacetic acid (TCAA), dichloroacetic acid (DCAA), and chloral hydrate (CH)] (mg/L level) and iodinated trihalomethanes (mu g/L level). HOCl was effective for converting iodophenols into IO3- and less toxic chlorinated aliphatic DBPs. Considering that chlorine was widely used as disinfectant, transformation and toxicity alteration of emerging DBPs during chlorination/booster chlorination warrant further investigations. (c) 2021 Elsevier Ltd. All rights reserved.