Vegetation effects on coastal foredune initiation: Wind tunnel experiments and field validation for three dune-building plants

被引:34
作者
Charbonneau, Bianca Reo [1 ]
Dohner, Stephanie M. [2 ]
Wnek, John P. [3 ]
Barber, Don [4 ]
Zarnetske, Phoebe [5 ,6 ]
Casper, Brenda B. [1 ]
机构
[1] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[2] Univ Delaware, Coll Earth Ocean & Environm, Lewes, DE 19958 USA
[3] Marine Acad Technol & Environm Sci, Manahawkin, NJ 08050 USA
[4] Bryn Mawr Coll, Dept Environm Studies, Bryn Mawr, PA 19010 USA
[5] Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48824 USA
[6] Michigan State Univ, Ecol Evolut & Behav Program, E Lansing, MI 48824 USA
关键词
Biogeomorphic and ecogeomorphic systems; Ecogeomorphology; Ecosystem Engineers; Nebkha; ECOSYSTEM ENGINEERS; SEDIMENT TRANSPORT; CAREX-KOBOMUGI; BEACH; FLOW; ISLAND; GEOMORPHOLOGY; NEBKHA; GRASS; MORPHOLOGY;
D O I
10.1016/j.geomorph.2021.107594
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
As the land-sea interface, foredunes buffer upland habitats with plants acting as ecosystem engineers shaping topography, and thereby affecting storm response and recovery. However, many ecogeomorphic feedbacks in coastal foredune formation and recovery remain uncertain in this dynamic environment. We carried out a series of wind tunnel experiments testing how the morphology, density, and configuration of three foredune pioneer dune building plant species influence the most basic stage of dune initiation - nebkha formation around individual plants. We established monocultures of native Ammophila breviligulata and Panicum amarum and invasive Carex kobomugi in 1 m x 1 m planter boxes of sand to simulate approximate natural and managed densities and planting configurations on the US Mid-Atlantic coast. We subjected each box to constant 8.25 m/s wind for 30 min in a moveable-bed unilateral-flow wind tunnel with an unvegetated upwind sand bed. We quantified resulting topography with sub-millimeter precision and related it to plant morphology, density, and configuration. Plant morphology, density, and configuration all influenced the resulting topography. Larger plants produced larger nebkha with greater relief, height, and sand volume. However, nebkha area, height, and planform shape varied among species, and taller plants did not necessarily produce taller nebkha. The erect grasses, Ammophila and Panicum, produced more elongated, high-relief nebkha compared to the low-lying Carex, which produced lower and more symmetrical equant nebkha. A staggered planting configuration produced greater net sediment accumulation than non-staggered. We validated these results against high-resolution field topographies of foredune nebkha and found strong agreement between the datasets. Our results provide species-specific parameters useful in designing foredune plantings and beach management and can be used to parameterize vegetation in models of foredune evolution associated with different plant species. By first understanding the underlying ecogeomorphic feedbacks involved in nebkha formation, we can more effectively scale up to forecast coastal foredune evolution and recovery. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 102 条
[21]   Changes in plant abundance on a coastal beach following two major storm surges [J].
Cheplick, Gregory P. .
JOURNAL OF THE TORREY BOTANICAL SOCIETY, 2016, 143 (02) :180-191
[22]   Engineer pioneer plants respond to and affect geomorphic constraints similarly along water-terrestrial interfaces world-wide [J].
Corenblit, Dov ;
Baas, Andreas ;
Balke, Thorsten ;
Bouma, Tjeerd ;
Fromard, Francois ;
Garofano-Gomez, Virginia ;
Gonzalez, Eduardo ;
Gurnell, Angela M. ;
Hortobagyi, Borbala ;
Julien, Frederic ;
Kim, Daehyun ;
Lambs, Luc ;
Stallins, J. Anthony ;
Steiger, Johannes ;
Tabacchi, Eric ;
Walcker, Romain .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2015, 24 (12) :1363-1376
[23]   Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings [J].
Corenblit, Dov ;
Baas, Andreas C. W. ;
Bornette, Gudrun ;
Darrozes, Jose ;
Delmotte, Sebastien ;
Francis, Robert A. ;
Gurnell, Angela M. ;
Julien, Frederic ;
Naiman, Robert J. ;
Steiger, Johannes .
EARTH-SCIENCE REVIEWS, 2011, 106 (3-4) :307-331
[24]  
Cowles H.C., 1899, BOT GAZETTTE, V27, P167
[25]   Shrubs as ecosystem engineers in a coastal dune: influences on plant populations, communities and ecosystems [J].
Cushman, J. Hall ;
Waller, Jeffrey C. ;
Hoak, Derek R. .
JOURNAL OF VEGETATION SCIENCE, 2010, 21 (05) :821-831
[26]   Root- and microbial-derived mucilages affect soil structure and water transport [J].
Czarnes, S ;
Hallett, PD ;
Bengough, AG ;
Young, IM .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2000, 51 (03) :435-443
[27]  
Davies J.L., 1980, Geographical Variations in Coastal Development, V2nd
[28]   COMPUTER-SIMULATION OF THE DYNAMICS OF A DUNE SYSTEM [J].
DECASTRO, F .
ECOLOGICAL MODELLING, 1995, 78 (03) :205-217
[29]  
Dohner S.M., 2016, SHORE BEACH, V84, P1
[30]  
Dunham Arthur E., 1998, P27