SHADOWING AND DYNAMICAL SYNTHESIS

被引:6
作者
Akhmet, M. U. [1 ,2 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2009年 / 19卷 / 10期
关键词
Dynamical synthesis; impulsive systems; hyperbolic sets; shadowing property; Devaney's ingredients; sensitivity; intermittency; SYSTEM; CHAOS; SETS;
D O I
10.1142/S0218127409024797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a system with a discontinuity moments generator to obtain the solutions. It is proven that the system is chaotic and has shadowing property [Anosov, 1967; Bowen, 1975; Hammel et al., 1987; Robinson, 1995] if the generator possesses these characteristics. Illustrative examples are provided.
引用
收藏
页码:3339 / 3346
页数:8
相关论文
共 16 条
[1]   DYNAMICAL SYNTHESIS OF QUASI-MINIMAL SETS [J].
Akhmet, M. U. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07) :2423-2427
[2]   Devaney's chaos of a relay system [J].
Akhmet, M. U. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1486-1493
[3]   Li-Yorke chaos in the system with impacts [J].
Akhmet, M. U. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) :804-810
[4]   On the general problem of stability for impulsive differential equations [J].
Akhmet, MU .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) :182-196
[5]  
[Anonymous], INTRO CHAOTIC DYNAMI
[6]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[7]  
[Anonymous], SHADOWING DYNAMICAL
[8]  
[Anonymous], 1967, P STEKLOV I MATH
[9]  
BOWEN R, 1975, J DIFFER EQUATIONS, V18, P333, DOI 10.1016/0022-0396(75)90065-0
[10]   DYNAMICAL SYNTHESIS OF POINCARE MAPS [J].
Brown, Ray ;
Chua, Leon O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05) :1235-1267