Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19

被引:71
作者
Singh, Harendra [1 ]
Srivastava, H. M. [2 ,3 ,4 ]
Hammouch, Zakia [5 ]
Nisar, Kottakkaran Sooppy [6 ]
机构
[1] Postgrad Coll, Dept Math, Ghazipur 233001, Uttar Pradesh, India
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[5] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Taiwan
[6] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir 11991, Saudi Arabia
关键词
Corona virus model; Fractional derivatives; Stability analysis;
D O I
10.1016/j.rinp.2020.103722
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main purpose of this work is to study the dynamics of a fractional-order Covid-19 model. An efficient computational method, which is based on the discretization of the domain and memory principle, is proposed to solve this fractional-order corona model numerically and the stability of the proposed method is also discussed. Efficiency of the proposed method is shown by listing the CPU time. It is shown that this method will work also for long-time behaviour. Numerical results and illustrative graphical simulation are given. The proposed discretization technique involves low computational cost.
引用
收藏
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2020, Associated Press
[2]  
Atangana A., 2020, Mathematical modeling of an autonomous nonlinear dynamical system for malaria transmission using Caputo derivative, P225
[3]   ANALYSIS OF FRACTAL-FRACTIONAL MALARIA TRANSMISSION MODEL [J].
Gomez-Aguilar, J. F. ;
Cordova-Fraga, T. ;
Abdeljawad, Thabet ;
Khan, Aziz ;
Khan, Hasib .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
[4]  
Haberman Maggie, 2020, New York Times
[5]   Dynamical study of fractional order mutualism parasitism food web module [J].
Khan, Aziz ;
Abdeljawad, Thabet ;
Gomez-Aguilar, J. F. ;
Khan, Hasib .
CHAOS SOLITONS & FRACTALS, 2020, 134
[6]   Stability analysis and numerical solutions of fractional order HIV/AIDS model [J].
Khan, Aziz ;
Gomez-Aguilar, J. F. ;
Khan, Tahir Saeed ;
Khan, Hasib .
CHAOS SOLITONS & FRACTALS, 2019, 122 :119-128
[7]   Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative [J].
Khan, Muhammad Altaf ;
Atangana, Abdon .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) :2379-2389
[8]  
Kilbas AA, 2006, Theory and applications of fractional differential equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[9]   Fractional dynamical system and its linearization theorem [J].
Li, Changpin ;
Ma, Yutian .
NONLINEAR DYNAMICS, 2013, 71 (04) :621-633
[10]   Chaos control of integer and fractional orders of chaotic Burke-Shaw system using time delayed feedback control [J].
Mahmoud, Gamal M. ;
Arafa, Ayman A. ;
Abed-Elhameed, Tarek M. ;
Mahmoud, Emad E. .
CHAOS SOLITONS & FRACTALS, 2017, 104 :680-692