Multiplicative latent factor models for description and prediction of social networks

被引:99
作者
Hoff, Peter D. [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Washington, Ctr Stat & Social Sci, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Eigenvalue decomposition; Exchangeability; Prediction; Singular value decomposition; Social network; Visualization; ROUND ROBIN ANALYSIS; VARIANCE;
D O I
10.1007/s10588-008-9040-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss a statistical model of social network data derived from matrix representations and symmetry considerations. The model can include known predictor information in the form of a regression term, and can represent additional structure via sender-specific and receiver-specific latent factors. This approach allows for the graphical description of a social network via the latent factors of the nodes, and provides a framework for the prediction of missing links in network data.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 14 条
[1]   REPRESENTATIONS FOR PARTIALLY EXCHANGEABLE ARRAYS OF RANDOM-VARIABLES [J].
ALDOUS, DJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) :581-598
[2]  
[Anonymous], 1985, Ecole d'Ete de Probabilites de Saint-Flour XIII
[3]  
[Anonymous], 39 U WASH CTR STAT S
[4]  
[Anonymous], 1983, MONOGRAPHS STAT APPL
[5]  
[Anonymous], 2002, J SOC STRUCT
[6]   Bilinear mixed-effects models for dyadic data [J].
Hoff, PD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :286-295
[7]   Latent space approaches to social network analysis [J].
Hoff, PD ;
Raftery, AE ;
Handcock, MS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) :1090-1098
[8]   Estimation and prediction for stochastic blockstructures [J].
Nowicki, K ;
Snijders, TAB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1077-1087
[9]  
TIERNEY L, 1994, ANN STAT, V22, P1701, DOI 10.1214/aos/1176325750
[10]  
Ward M., 2005, 45 U WASH CTR STAT S