Synthesis of very narrow multilayer graphene nanoribbon with turbostratic stacking

被引:15
作者
Negishi, R. [1 ]
Yamamoto, K. [1 ]
Kitakawa, H. [1 ]
Fukumori, M. [2 ]
Tanaka, H. [3 ]
Ogawa, T. [2 ]
Kobayashi, Y. [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
[3] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-1 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
基金
日本学术振兴会;
关键词
SINGLE-LAYER; GROWTH;
D O I
10.1063/1.4983349
中图分类号
O59 [应用物理学];
学科分类号
摘要
A multilayer graphene nanoribbon (GNR) less than 20nm wide was synthesized by overlayer growth of graphene on a GNR template. First, very narrow template GNRs with widths of approximately 10nm were prepared by unzipping from double-walled carbon nanotubes. Additional 4-5 layers of graphene were then formed on the pristine GNR template by chemical vapor deposition. Raman spectroscopy revealed that the synthesized multilayer GNR had turbostratic stacking without any structural correlation between the graphene layers. A large on/off ratio and a high on-current were observed in field effect transistors fabricated using the synthesized multilayer GNR channel. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Stacking order dependent electric field tuning of the band gap in graphene multilayers [J].
Avetisyan, A. A. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 81 (11)
[2]   Measuring the degree of stacking order in graphite by Raman spectroscopy [J].
Cancado, L. G. ;
Takai, K. ;
Enoki, T. ;
Endo, M. ;
Kim, Y. A. ;
Mizusaki, H. ;
Speziali, N. L. ;
Jorio, A. ;
Pimenta, M. A. .
CARBON, 2008, 46 (02) :272-275
[3]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[4]   The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes [J].
Dhakate, S. R. ;
Chauhan, N. ;
Sharma, S. ;
Mathur, R. B. .
CARBON, 2011, 49 (13) :4170-4178
[5]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242
[6]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[7]  
Jiao LY, 2010, NAT NANOTECHNOL, V5, P321, DOI [10.1038/nnano.2010.54, 10.1038/NNANO.2010.54]
[8]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[9]   Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars [J].
Kato, Toshiaki ;
Hatakeyama, Rikizo .
NATURE NANOTECHNOLOGY, 2012, 7 (10) :651-656
[10]   Effect of Layer Stacking on the Electronic Structure of Graphene Nanoribbons [J].
Kharche, Neerav ;
Zhou, Yu ;
O'Brien, Kevin P. ;
Kar, Swastik ;
Nayak, Saroj K. .
ACS NANO, 2011, 5 (08) :6096-6101