microRNA-29b prevents renal fibrosis by attenuating renal tubular epithelial cell-mesenchymal transition through targeting the PI3K/AKT pathway

被引:30
作者
Hu, Shuang [1 ,2 ]
Hu, Hongtao [3 ]
Wang, Rui [1 ]
He, Hong [1 ]
Shui, Hua [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Dept Nephrol, 169 Rd East lake, Wuhan 430071, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Cent Hosp, Tongji Med Coll, Dept Nephrol, Wuhan 430071, Hubei, Peoples R China
[3] Wuhan Univ, Zhongnan Hosp, Dept Intens Care Unit, Wuhan 430071, Hubei, Peoples R China
关键词
Unilateral ureteral obstruction; Angiotensin-II; NRK-52E cells; MicroRNA-29b; Phosphatidylinositol; 3-kinase; protein kinase B; Epithelial– mesenchymal transition; DIABETIC-NEPHROPATHY; NONCODING RNA; EXPRESSION;
D O I
10.1007/s11255-021-02836-4
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose This study aimed to investigate the effects of miR-29b on renal interstitial fibrosis in the obstructed kidney of mouse with unilateral ureteral obstruction (UUO) via inhibiting phosphatidylinositol 3-kinase/protein kinaseB (PI3K/AKT) signaling pathway. Methods Adult male CD-1 mice were intraperitoneally injected with vehicle or PI3K inhibitor LY294002 (3 mg/kg, 30 mg/kg) daily for 1 or 2 weeks after performing UUO or sham operation. The mice were sacrificed on days 7 and 14 after surgery. The rat proximal tubular epithelial cell (TEC) line NRK-52E was cultured in DMEM and treated with various concentrations angiotensin II (AngII). Obstructed and sham mouse kidneys were analyzed via HE, Masson and immunohistochemistry to assess the degree of renal fibrosis. Real-time quantitative polymerase chain reaction assays (RT-PCR) were performed to investigate changes in the levels of expression of miR-29b and Western blot was used to analyze the activation of PI3K/AKT signaling and expression of E-cadherin, alpha-smooth muscle actin (alpha-SMA). Results Histologic analyses of obstructed kidney revealed that LY294002 attenuated the degree of renal fibrosis. In this study, loss of miR-29b accompanied with increased epithelial-mesenchymal transition (EMT) was observed in renal tubules of mice after UUO and cultured NRK-52E cells exposed to AngII. LY294002 also prominently decreased phosphorylation of AKT in vivo and vitro. By RT-PCR and Western blot analysis, LY294002 blocked the PI3K/AKT-induced loss of E-cadherin expression and de novo increase of the expression of alpha-SMA in a time- and dose-dependent manner. The overexpression of miR-29b markedly reversed the phenotype induced by AngII in NRK-52E cells and the downregulation miR-29b expression with an miR-29b inhibitor resulted in enhanced EMT. In addition, the PI3K/AKT signaling pathway was found to be suppressed in the presence of overexpression of miR-29b by direct hybridization with 3 '-untranslated region (3 '-UTR) of PIK3R2. Conclusion Our findings suggested that miR-29b significantly prevented tubulointerstitial injury in mouse model of UUO by attenuating renal tubular epithelial cell-mesenchymal transition via repressing PI3K/AKT signaling pathway.
引用
收藏
页码:1941 / 1950
页数:10
相关论文
共 28 条
[1]   The role of EMT in renal fibrosis [J].
Carew, Rosemarie M. ;
Wang, Bo ;
Kantharidis, Phillip .
CELL AND TISSUE RESEARCH, 2012, 347 (01) :103-116
[2]   A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA [J].
Cesana, Marcella ;
Cacchiarelli, Davide ;
Legnini, Ivano ;
Santini, Tiziana ;
Sthandier, Olga ;
Chinappi, Mauro ;
Tramontano, Anna ;
Bozzoni, Irene .
CELL, 2011, 147 (02) :358-369
[3]   Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy [J].
Chevalier, Robert L. ;
Forbes, Michael S. ;
Thornhill, Barbara A. .
KIDNEY INTERNATIONAL, 2009, 75 (11) :1145-1152
[4]   MicroRNAs in renal fibrosis [J].
Chung, Arthur C. -K. ;
Lan, Hui Y. .
FRONTIERS IN PHYSIOLOGY, 2015, 6
[5]   MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases [J].
Dai, Rujuan ;
Ahmed, S. Ansar .
TRANSLATIONAL RESEARCH, 2011, 157 (04) :163-179
[6]   Targeting non-coding RNA for the therapy of renal disease [J].
Denby, Laura ;
Baker, Andrew H. .
CURRENT OPINION IN PHARMACOLOGY, 2016, 27 :70-77
[7]   Cellular and molecular mechanisms of kidney fibrosis [J].
Djudjaj, Sonja ;
Boor, Peter .
MOLECULAR ASPECTS OF MEDICINE, 2019, 65 :16-36
[8]   High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells [J].
Du, Bin ;
Ma, Li-Ming ;
Huang, Mian-Bo ;
Zhou, Hui ;
Huang, Hui-Lin ;
Shao, Peng ;
Chen, Yue-Qin ;
Qu, Liang-Hu .
FEBS LETTERS, 2010, 584 (04) :811-816
[9]   Diverse origins of the myofibroblast -implications for kidney fibrosis [J].
Falke, Lucas L. ;
Gholizadeh, Shima ;
Goldschmeding, Roel ;
Kok, Robbert J. ;
Nguyen, Tri Q. .
NATURE REVIEWS NEPHROLOGY, 2015, 11 (04) :233-244
[10]   MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis [J].
Gomez, Ivan G. ;
Nakagawa, Naoki ;
Duffield, Jeremy S. .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2016, 310 (10) :P931-P944