Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach

被引:5
作者
Barber, Xavier [1 ,6 ,7 ]
Conesa, David [2 ,6 ,7 ]
Lopez-Quilez, Antonio [2 ,6 ,7 ]
Martinez-Minaya, Joaquin [3 ,6 ,7 ]
Paradinas, Iosu [4 ,6 ,8 ]
Pennino, Maria Grazia [5 ,6 ]
机构
[1] Univ Miguel Hernandez, Ctr Operat Res CIO, Elche 03202, Spain
[2] Univ Valencia, Dept Stat & Operat Res, Valencia 46100, Spain
[3] Basque Ctr Appl Math BCAM, Data Sci Area, E-48009 Bilbao, Spain
[4] Univ St Andrews, Scottish Oceans Inst, St Andrews KY16 9AJ, Fife, Scotland
[5] Inst Espanol Oceanog, Ctr Oceanog Vigo, Subida Radio Faro 50-52, Vigo 36390, Spain
[6] Stat Modeling Ecol Grp SMEG, Valencia, Spain
[7] Valencia Bayesian Res Grp VaBaR, C Dr Moliner 50, Valencia 46100, Spain
[8] Asociac Ipar Perspect, Karabiondo kalea 14, Sopela 48600, Spain
关键词
Bayesian hierarchical models; coregionalized models; fisheries; INLA; predation; SPDE; species interaction; RANDOM-FIELDS; PREDICTION; SPACE;
D O I
10.3390/math9040417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we discuss the use of a methodological approach for modelling spatial relationships among species by means of a Bayesian spatial coregionalized model. Inference and prediction is performed using the integrated nested Laplace approximation methodology to reduce the computational burden. We illustrate the performance of the coregionalized model in species interaction scenarios using both simulated and real data. The simulation demonstrates the better predictive performance of the coregionalized model with respect to the univariate models. The case study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus), and one of its predator species, the European hake (Merluccius merluccius), in the Mediterranean sea. The results indicate that European hake and anchovy are positively associated, resulting in improved model predictions using the coregionalized model.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 44 条
  • [1] Abramowitz M., 1988, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  • [2] [Anonymous], 2006, Multivariate Geostatistics: An Introduction With Applications
  • [3] Banerjee S., 2014, Hierarchical Modelling and Analysis for Spatial Data
  • [4] Multivariate Bioclimatic Indices Modelling: A Coregionalised Approach
    Barber, Xavier
    Conesa, David
    Lopez-Quilez, Antonio
    Morales, Javier
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) : 225 - 244
  • [5] Bayesian hierarchical models for analysing the spatial distribution of bioclimatic indices
    Barber, Xavier
    Conesa, David
    Lopez-Quilez, Antonio
    Mayoral, Asuncion
    Morales, Javier
    Barber, Antoni
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2017, 41 (02) : 277 - 296
  • [6] The general specifications of the MEDITS surveys
    Bertrand, JA
    De Sola, LG
    Papaconstantinou, C
    Relini, G
    Souplet, A
    [J]. SCIENTIA MARINA, 2002, 66 : 9 - 17
  • [7] Blangiardo M, 2015, SPATIAL AND SPATIO-TEMPORAL BAYESIAN MODELS WITH R-INLA, P1, DOI 10.1002/9781118950203
  • [8] Chiles J., 1999, GEOESTATISTICS MODEL
  • [9] Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches
    Coll, M.
    Grazia Pennino, M.
    Steenbeek, J.
    Sole, J.
    Bellido, J. M.
    [J]. ECOLOGICAL MODELLING, 2019, 405 : 86 - 101
  • [10] Multivariate spatial covariance models: a conditional approach
    Cressie, Noel
    Zammit-Mangion, Andrew
    [J]. BIOMETRIKA, 2016, 103 (04) : 915 - 935