Proper holomorphic embeddings of complements of large Cantor sets in C2

被引:2
作者
Di Salvo, G. D. [1 ]
Wold, E. F. [1 ]
机构
[1] Univ Oslo, Dept Math, Postboks 1053 Blindern, NO-0316 Oslo, Norway
来源
ARKIV FOR MATEMATIK | 2022年 / 60卷 / 02期
关键词
CONNECTED PLANAR DOMAINS; RIEMANN SURFACES; STEIN MANIFOLDS;
D O I
10.4310/ARKIV.2022.v60.n2.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exist Cantor sets of arbitrarily large 2-dimensional Lebesgue measure whose complements admit proper holomorphic embeddings in C-2.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 23 条
[11]   EMBEDDINGS OF INFINITELY CONNECTED PLANAR DOMAINS INTO C2 [J].
Forstneric, Franc ;
Wold, Erlend Fornaess .
ANALYSIS & PDE, 2013, 6 (02) :499-514
[12]   Bordered Riemann surfaces in C2 [J].
Forstneric, Franc ;
Wold, Erlend Fornaess .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (01) :100-114
[13]   HOLOMORPHIC EMBEDDINGS OF PLANAR DOMAINS INTO C-2 [J].
GLOBEVNIK, J ;
STENSONES, B .
MATHEMATISCHE ANNALEN, 1995, 303 (04) :579-597
[14]  
Kutzschebauch F, 2009, MATH Z, V262, P603, DOI 10.1007/s00209-008-0392-8
[15]   IMBEDDING ANNULI IN C-2 [J].
LAUFER, HB .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :187-215
[16]   Proper holomorphic embeddings of finitely connected planar domains into a", n [J].
Majcen, Irena .
ARKIV FOR MATEMATIK, 2013, 51 (02) :329-343
[17]   Embedding Certain Infinitely Connected Subsets of Bordered Riemann Surfaces Properly into C2 [J].
Majcen, Irena .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (03) :695-707
[18]   Proper analytic embedding of CP1 minus a Cantor set into C2 [J].
Orevkov, S. Yu. .
RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (01) :168-169
[19]  
REMMERT R, 1956, CR HEBD ACAD SCI, V243, P118
[20]   A Strong Oka Principle for Embeddings of Some Planar Domains into C x C* [J].
Ritter, Tyson .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :571-597