Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows

被引:36
|
作者
Renard, Florian [1 ]
Feng, Yongliang [2 ]
Boussuge, Jean-Francois [1 ]
Sagaut, Pierre [2 ]
机构
[1] CERFACS, 42 Ave G Coriolis, F-31057 Toulouse, France
[2] Aix Marseille Univ, M2P2, Cent Marseille, CNRS, F-13451 Marseille, France
关键词
LBM; Compressible; High speed flow; Shock waves; Aerodynamic noise; MODEL; HYDRODYNAMICS;
D O I
10.1016/j.compfluid.2021.104867
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A D2Q9 Hybrid Lattice Boltzmann Method (HLBM) is proposed for the simulation of both compressible subsonic and supersonic flows. This HLBM is an extension of the model of Feng et al. [1], which has been found, via different test cases, to be unstable for supersonic regimes. To circumvent this limitation, we propose:: (1) a new discretization of the lattice closure correction term that makes possible the simulation of supersonic flows, (2) a corrected viscous stress tensor that takes into account polyatomic gases, and (3) a novel discretization of the viscous heat production term fitting with the regularized formalism. The result is a hybrid method that resolves the mass and momentum equations with an LBM algorithm, and resolves the entropy-based energy equation with a finite volume method. This approach fully recovers the physics of the Navier-Stokes-Fourier equations with the ideal gas equation of state, and is valid from subsonic to supersonic regimes. It is then successfully assessed with both smooth flows and flows involving shocks. The proposed model is shown to be an efficient, accurate, and robust alternative to classic Navier-Stokes methods for the simulation of compressible flows. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A spectral difference lattice Boltzmann method for solution of inviscid compressible flows on structured grids
    Hejranfar, Kazem
    Ghaffarian, Ali
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) : 1341 - 1368
  • [22] Implicit-explicit finite-difference lattice boltzmann method for compressible flows
    Wang, Y.
    He, Y. L.
    Zhao, T. S.
    Tang, G. H.
    Tao, W. Q.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12): : 1961 - 1983
  • [23] A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
    Farag, G.
    Zhao, S.
    Coratger, T.
    Boivin, P.
    Chiavassa, G.
    Sagaut, P.
    PHYSICS OF FLUIDS, 2020, 32 (06)
  • [24] Compressible lattice Boltzmann method with rotating overset grids
    Yoo, H.
    Wissocq, G.
    Jacob, J.
    Favier, J.
    Sagaut, P.
    PHYSICAL REVIEW E, 2023, 107 (04)
  • [25] Aeroacoustic Simulations Using Compressible Lattice Boltzmann Method
    Li, Kai
    Zhong, Chengwen
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (05) : 795 - 809
  • [26] Entropic Lattice Boltzmann Method for Multiphase Flows
    Mazloomi, A. M.
    Chikatamarla, S. S.
    Karlin, I. V.
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [27] Thermal lattice Boltzmann method for multiphase flows
    Kupershtokh, Alexander L.
    Medvedev, Dmitry A.
    Gribanov, Igor I.
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [28] Transitional flows with the entropic lattice Boltzmann method
    Dorschner, B.
    Chikatamarla, S. S.
    Karlin, I. V.
    JOURNAL OF FLUID MECHANICS, 2017, 824 : 388 - 412
  • [29] THE LATTICE BOLTZMANN EQUATION METHOD FOR COMPLEX FLOWS
    Schaefer, Laura
    Ikeda, Michael
    Bao, Jie
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 687 - +
  • [30] Lattice Boltzmann method for axisymmetric turbulent flows
    Wang, Wei
    Zhou, Jian Guo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (09):