Shape preserving properties of generalized Bernstein operators on Extended Chebyshev spaces

被引:51
作者
Aldaz, J. M. [1 ]
Kounchev, O. [2 ]
Render, H. [3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[3] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
关键词
OPTIMAL STABILITY; BASES; CURVE;
D O I
10.1007/s00211-009-0248-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and shape preserving properties of a generalized Bernstein operator B-n fixing a strictly positive function f(0), and a second function f(1) such that f(1)/f(0) is strictly increasing, within the framework of extended Chebyshev spaces U-n. The first main result gives an inductive criterion for existence: suppose there exists a Bernstein operator B-n : C[a, b] -> U-n with strictly increasing nodes, fixing f(0), f(1) is an element of U-n subset of If U-n subset of Un+ 1 and Un+ 1 has a non-negative Bernstein basis, then there exists a Bernstein operator Bn+ 1 : C[a, b] -> Un+ 1 with strictly increasing nodes, fixing f(0) and f(1). In particular, if f(0), f(1),..., f(n) is a basis of U-n such that the linear span of f(0),..., f(k) is an extended Chebyshev space over [a, b] for each k = 0,..., n, then there exists a Bernstein operator B-n with increasing nodes fixing f(0) and f(1). The second main result says that under the above assumptions the following inequalities hold
引用
收藏
页码:1 / 25
页数:25
相关论文
共 35 条
  • [1] Bernstein Operators for Exponential Polynomials
    Aldaz, J. M.
    Kounchev, O.
    Render, H.
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 345 - 367
  • [2] ALDAZ JM, OPTIMALITY GEN UNPUB
  • [3] ALDAZ JM, BERNSTEIN OPER UNPUB
  • [4] [Anonymous], 1968, TOTAL POSITIVITY
  • [5] Arama O., 1957, Stud. Cerc. Matem. Acad. RPR, V8, P195
  • [6] Bessenyei M, 2003, MATH INEQUAL APPL, V6, P379
  • [7] Shape preservation regions for six-dimensional spaces
    Carnicer, J. M.
    Mainar, E.
    Pena, J. M.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 121 - 136
  • [8] Carnicer J. M., 1993, ADV COMPUT MATH, V1, P173, DOI [10.1007/BF02071384, DOI 10.1007/BF02071384]
  • [9] Critical length for design purposes and extended Chebyshev spaces
    Carnicer, JM
    Mainar, E
    Peña, JM
    [J]. CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) : 55 - 71
  • [10] Carnicer JM, 1996, MATH APPL, V359, P133