Positive and nodal solutions for an elliptic equation with critical growth

被引:9
作者
Furtado, Marcelo F. [1 ]
Souza, Bruno N. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Triangulo Mineiro, ICTE, BR-38064200 Uberaba, MG, Brazil
关键词
Critical exponent; positive solution; nodal solution; elliptic equations; CRITICAL SOBOLEV EXPONENT; MULTIPLICITY; TOPOLOGY;
D O I
10.1142/S0219199715500212
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem -div(p(x)del u) = lambda vertical bar u|(q-2)u + vertical bar u vertical bar(2*-2)u, u is an element of H-0(1)(Omega), where Omega subset of R-N is a bounded smooth domain, N >= 4, 2* = 2N/(N - 2), 2 <= q < 2*. Under some suitable conditions on the continuous potential p(x) and on the parameter lambda > 0, we obtain one nodal solution for q = 2 and one positive solution for 2 < q < 2*.
引用
收藏
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1997, Minimax theorems
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[7]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[8]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[9]  
Coron J. M., 1985, CR HEBD ACAD SCI, V299, P209
[10]   On a class of nonlinear elliptic equations with fast increasing weight and critical growth [J].
Furtado, Marcelo F. ;
Myiagaki, Olimpio H. ;
da Silva, Joao Pablo P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1035-1055