Underdetermined DOA Estimation for Uniform Circular Array Based on Sparse Signal Reconstruction

被引:0
|
作者
Basikolo, Thomas [1 ]
Ichige, Koichi [1 ]
Arai, Hiroyuki [1 ]
机构
[1] Yokohama Natl Univ, Dept Elect & Comp Engn, Hodogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
来源
2016 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP) | 2016年
关键词
Sparse signal reconstruction; Khatri-Rao; underdetermined DOA estimation; l(1)-based optimization;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper proposes a novel sparsity-aware method that can estimate more sources than the number of sensors available based on the l(1) optimization technique. This approach enforces sparsity by l(1) penalization and restricting error by l(2)-norm which enables the reconstruction of sparse signals. By using the Khatri-Rao (KR) subspace approach, we obtain an increase in the degrees of freedom (DOFs). Thus, using uniform circular array (UCA), we can perform underdetermined DOA estimation for sparse signals. Simulation results confirms the effectiveness of the proposed method.
引用
收藏
页码:1012 / 1013
页数:2
相关论文
共 39 条
  • [21] Fourth-Order Cumulants based Underdetermined 2-D DOA Estimation using Single AVS
    Sharma, Umesh
    Agrawal, Monika
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [22] Hyperparameter-Free Sparse Signal Reconstruction Approaches to Time Delay Estimation
    Park, Hyung-Rae
    Li, Jian
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2018, E101B (08) : 1809 - 1819
  • [23] Sparse-reconstruction-based 2-D angle of arrival estimation with L-shaped array
    Tian, Ye
    Lian, Qiusheng
    Xu, He
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 72 : 162 - 165
  • [24] Off-Grid DoA Estimation on Non-Uniform Linear Array Using Constrained Hermitian Matrix
    Chung, Hyeonjin
    Joo, Jeungmin
    Kim, Sunwoo
    ENERGIES, 2020, 13 (21)
  • [25] An Alternative Lagrange-Dual Based Algorithm for Sparse Signal Reconstruction
    Wang, Yiju
    Zhou, Guanglu
    Caccetta, Louis
    Liu, Wanquan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1895 - 1901
  • [26] Variance-Component Based Sparse Signal Reconstruction and Model Selection
    Qiu, Kun
    Dogandzic, Aleksandar
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) : 2935 - 2952
  • [27] Backtracking-Based Matching Pursuit Method for Sparse Signal Reconstruction
    Huang, Honglin
    Makur, Anamitra
    IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (07) : 391 - 394
  • [28] Sparse Signal Reconstruction Algorithm Based on Non-convex Composite Function
    Zhou J.-R.
    Li H.-Y.
    Ling J.
    Chen H.
    Peng J.-G.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (07): : 1782 - 1793
  • [29] Fast algorithm for sparse signal reconstruction based on off-grid model
    Liu, Qi-Yong
    Zhang, Qun
    Luo, Ying
    Li, Kai-Ming
    Sun, Li
    IET RADAR SONAR AND NAVIGATION, 2018, 12 (04) : 390 - 397
  • [30] Decoupled 2D Direction Finding Based on Sparse Signal Reconstruction
    Wang, Feng
    Cui, Xiaowei
    Lu, Mingquan
    2014 IEEE MILITARY COMMUNICATIONS CONFERENCE: AFFORDABLE MISSION SUCCESS: MEETING THE CHALLENGE (MILCOM 2014), 2014, : 306 - 311