Multi-solitons for a generalized Davey-Stewartson system

被引:2
作者
Wang Zhong [1 ,2 ]
Cui ShangBin [2 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Davey-Stewartson system; multi-solitons; existence; nonlocal; NONLINEAR SCHRODINGER-EQUATIONS; INITIAL-VALUE PROBLEM; STANDING WAVES; GLOBAL EXISTENCE; INSTABILITY; SCATTERING; DIMENSIONS; EVOLUTION; PACKETS;
D O I
10.1007/s11425-015-0270-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies multi-solitons of non-integrable generalized Davey-Stewartson system in the elliptic-elliptic case. By extending the method for constructing multi-solitons of non-integrable nonlinear Schrodinger equations and systems developed by Martel et al. to the present non-integrable generalized Davey- Stewartson system and overcoming some new difficulties caused by the nonlocal operator B, we prove the existence of multi-solitons for this system. Furthermore, we also give a generalization of this result to a more general class of equations with nonlocal nonlinearities.
引用
收藏
页码:651 / 670
页数:20
相关论文
共 28 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   NONLINEAR EVOLUTION EQUATIONS - 2 AND 3 DIMENSIONS [J].
ABLOWITZ, MJ ;
HABERMAN, R .
PHYSICAL REVIEW LETTERS, 1975, 35 (18) :1185-1188
[3]   EVOLUTION OF PACKETS OF WATER-WAVES [J].
ABLOWITZ, MJ ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) :691-715
[4]   SOLITON SOLUTIONS OF DAVEY-STEWARTSON EQUATION FOR LONG WAVES [J].
ANKER, D ;
FREEMAN, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) :529-540
[5]   Global existence and nonexistence results for a generalized Davey-Stewartson system [J].
Babaoglu, C ;
Eden, A ;
Erbay, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (48) :11531-11546
[6]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[7]  
Cazenave Th., 2003, COURANT LECT NOTES M
[8]  
CIPOLATTI R, 1993, ANN I H POINCARE-PHY, V58, P85
[9]   ON THE EXISTENCE OF STANDING WAVES FOR A DAVEY-STEWARTSON SYSTEM [J].
CIPOLATTI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :967-988