Deep Representation Learning for Orca Call Type Classification

被引:13
作者
Bergler, Christian [1 ]
Schmitt, Manuel [1 ]
Cheng, Rachael Xi [2 ]
Schroeter, Hendrik [1 ]
Maier, Andreas [1 ]
Barth, Volker [3 ]
Weber, Michael [3 ]
Noeth, Elmar [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Dept Comp Sci, Pattern Recognit Lab, Martensstr 3, D-91058 Erlangen, Germany
[2] Leibniz Inst Zoo & Wildlife Res IZW Forsch Verbun, Alfred Kowalke Str 17, D-10315 Berlin, Germany
[3] Anthro Media, Nansenstr 19, D-12047 Berlin, Germany
来源
TEXT, SPEECH, AND DIALOGUE (TSD 2019) | 2019年 / 11697卷
关键词
Deep learning; Classification; Representation learning; Bioacoustics; Orca; Killer whale; Call type; WHALES ORCINUS-ORCA; KILLER WHALES;
D O I
10.1007/978-3-030-27947-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine mammals produce a wide variety of vocalizations. There is a growing need for robust automatic classification methods especially in noisy underwater environments in order to access large amounts of bioacoustic signals and to replace tedious and error prone human perceptual classification. In case of the northern resident killer whale (Orcinus orca), echolocation clicks, whistles, and pulsed calls make up its vocal repertoire. Pulsed calls are the most intensively studied type of vocalization. In this study we propose a hybrid call type classification approach outperforming our previous work on supervised call type classification consisting of two components: (1) deep representation learning of killer whale sounds by investigating various autoencoder architectures and data corpora and (2) subsequent supervised training of a ResNet18 call type classifier on a much smaller dataset by using the pre-trained representations. The best semi-supervised trained classification model achieved a test accuracy of 96% and a mean test accuracy of 94% out-performing our previous work by 7% points.
引用
收藏
页码:274 / 286
页数:13
相关论文
共 22 条
  • [1] [Anonymous], 2000, KILLER WHALES NATURA
  • [2] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [3] Bigg MA., 1990, Rep. Int. Whal. Comm, V12, P383
  • [4] Brown J., 2006, JASA EXPRESS LETT, V119, P617
  • [5] Automatic identification of individual killer whales
    Brown, Judith C.
    Smaragdis, Paris
    Nousek-McGregor, Anna
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 128 (03) : EL93 - EL98
  • [6] Hidden Markov and Gaussian mixture models for automatic call classification
    Brown, Judith C.
    Smaragdis, Paris
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 125 (06) : EL221 - EL224
  • [7] Automated categorization of bioacoustic signals: Avoiding perceptual pitfalls
    Deecke, VB
    Janik, VM
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2006, 119 (01) : 645 - 653
  • [8] Cultural evolution of killer whale calls: background, mechanisms and consequences
    Filatova, Olga A.
    Samarra, Filipa I. P.
    Deecke, Volker B.
    Ford, John K. B.
    Miller, Patrick J. O.
    Yurk, Harald
    [J]. BEHAVIOUR, 2015, 152 (15) : 2001 - 2038
  • [9] VOCAL TRADITIONS AMONG RESIDENT KILLER WHALES (ORCINUS-ORCA) IN COASTAL WATERS OF BRITISH-COLUMBIA
    FORD, JKB
    [J]. CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE, 1991, 69 (06): : 1454 - 1483
  • [10] ACOUSTIC BEHAVIOR OF RESIDENT KILLER WHALES (ORCINUS-ORCA) OFF VANCOUVER ISLAND, BRITISH-COLUMBIA
    FORD, JKB
    [J]. CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE, 1989, 67 (03): : 727 - 745