InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting

被引:28
作者
Butson, Joshua D. [1 ]
Narangari, Parvathala Reddy [2 ]
Lysevych, Mykhaylo [1 ]
Wong-Leung, Jennifer [1 ]
Wan, Yimao [2 ]
Karuturi, Siva Krishna [1 ,2 ]
Tan, Hark Hoe [1 ]
Jagadish, Chennupati [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
photoelectrochemical water splitting; InGaAsP; photocathode; TiO2; electron selective; XPS; photoluminescence; SOLAR HYDROGEN-PRODUCTION; CONVERSION EFFICIENCY; SURFACE RECOMBINATION; STEADY-STATE; TANDEM; CELL; PERFORMANCE; DEVICE; ELECTROLYTES; PHOTOANODES;
D O I
10.1021/acsami.9b06656
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While photoelectrochemical (PEC) water splitting is a very promising route toward zero-carbon energy, conversion efficiency remains limited. Semiconductors with narrower band gaps can absorb a much greater portion of the solar spectrum, thereby increasing efficiency. However, narrow band gap (similar to 1 eV) III V semiconductor photoelectrodes have not yet been thoroughly investigated. In this study, the narrow band gap quaternary III V alloy InGaAsP is demonstrated for the first time to have great potential for PEC water splitting, with the long-term goal of developing high-efficiency tandem PEC devices. TiO2-coated InGaAsP photocathodes generate a photocurrent density of over 30 mA/cm(2) with an onset potential of 0.45 V versus reversible hydrogen electrode, yielding an applied bias efficiency of over 7%. This is an excellent performance, given that nearly all power losses can be attributed to reflection losses. X-ray photoelectron spectroscopy and photoluminescence spectroscopy show that InGaAsP and TiO2 form a type-II band alignment, greatly enhancing carrier separation and reducing recombination losses. Beyond water splitting, the tunable band gap of InGaAsP could be of further interest in other areas of photocatalysis, including CO2 reduction.
引用
收藏
页码:25236 / 25242
页数:7
相关论文
共 56 条
[1]  
A STM, 2006, Annu. B. ASTM Stand, V15, P1
[2]   Single-Step Fabrication of Visible-Light-Active ZnO-GaN:ZnO Branched Nanowire Array Photoanodes for Efficient Water Splitting [J].
Abbas, Yasir ;
Zuhra, Zareen ;
Akhtar, Naeem ;
Ali, Shafqat ;
Gong, Jian Ru .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (08) :3529-3536
[3]   Material challenges for solar cells in the twenty-first century: directions in emerging technologies [J].
Almosni, Samy ;
Delamarre, Amaury ;
Jehl, Zacharie ;
Suchet, Daniel ;
Cojocaru, Ludmila ;
Giteau, Maxime ;
Behaghel, Benoit ;
Julian, Anatole ;
Ibrahim, Camille ;
Tatry, Lea ;
Wang, Haibin ;
Kubo, Takaya ;
Uchida, Satoshi ;
Segawa, Hiroshi ;
Miyashita, Naoya ;
Tamaki, Ryo ;
Shoji, Yasushi ;
Yoshida, Katsuhisa ;
Ahsan, Nazmul ;
Watanabe, Kentaro ;
Inoue, Tomoyuki ;
Sugiyama, Masakazu ;
Nakano, Yoshiaki ;
Hamamura, Tomofumi ;
Toupance, Thierry ;
Olivier, Celine ;
Chambon, Sylvain ;
Vignau, Laurence ;
Geffroy, Camille ;
Cloutet, Eric ;
Hadziioannou, Georges ;
Cavassilas, Nicolas ;
Rale, Pierre ;
Cattoni, Andrea ;
Collin, Stephane ;
Gibelli, Francois ;
Paire, Myriam ;
Lombez, Laurent ;
Aureau, Damien ;
Bouttemy, Muriel ;
Etcheberry, Arnaud ;
Okada, Yoshitaka ;
Guillemoles, Jean-Francois .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) :336-369
[4]   Strategies for stable water splitting via protected photoelectrodes [J].
Bae, Dowon ;
Seger, Brian ;
Vesborg, Peter C. K. ;
Hansen, Ole ;
Chorkendorff, Ib .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (07) :1933-1954
[5]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[6]   A Bismuth Vanadate-Cuprous Oxide Tandem Cell for Overall Solar Water Splitting [J].
Bornoz, Pauline ;
Abdi, Fatwa F. ;
Tilley, S. David ;
Dam, Bernard ;
van de Krol, Roel ;
Graetzel, Michael ;
Sivula, Kevin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (30) :16959-16966
[7]  
Brillet J, 2012, NAT PHOTONICS, V6, P823, DOI [10.1038/nphoton.2012.265, 10.1038/NPHOTON.2012.265]
[8]   Photoelectrochemical studies of InGaN/GaN MQW photoanodes [J].
Butson, Joshua ;
Narangari, Parvathala Reddy ;
Karuturi, Siva Krishna ;
Yew, Rowena ;
Lysevych, Mykhaylo ;
Tan, Hark Hoe ;
Jagadish, Chennupati .
NANOTECHNOLOGY, 2018, 29 (04)
[9]   Preparation of nanoporous BiVO4/TiO2/Ti film through electrodeposition for photoelectrochemical water splitting [J].
Dong Hongxing ;
Liu Qiuping ;
He Yuehui .
ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (09)
[10]   Efficiency limits for photoelectrochemical water-splitting [J].
Fountaine, Katherine T. ;
Lewerenz, Hans Joachim ;
Atwater, Harry A. .
Nature Communications, 2016, 7