Approximation by quasi-projection operators in Besov spaces

被引:34
作者
Jia, Rong-Qing [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Approximation order; Moduli of smoothness; Quasi-projection; Quasi-interpolation; Sobolev spaces; Besov spaces; SHIFT-INVARIANT SPACES;
D O I
10.1016/j.jat.2009.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate approximation of quasi-projection operators in Besov spaces B(p,q)(mu), mu > 0, 1 <= p, q <= infinity. Suppose I is a countable index set. Let (Phi(i))(i is an element of 1), be a family of functions in Lp(R(s)), and let ((Phi) over bar (i))(i is an element of 1) be a family of functions in L (p) over tilde (R(s)), where 1/p + 1/(p) over tilde = 1. Let Q be the quasi-projection operator given by Qf = Sigma(i is an element of I)< f, (Phi) over bar (i)>Phi(i), f is an element of L(p)(R(s)). For h > 0, by sigma(h) we denote the scaling operator given by sigma(h) f(x) := f(x) := f(x/h), x is an element of R(s). Let Q(h) := sigma(h) Q sigma(1)/h. Under some mild conditions on the functions phi(i) and (phi) over tilde (i) (i is an element of 1), we establish the following result: If 0 < mu < nu < k, and if Qg = g for all polynomials 017 degree at most k - 1, then the estimate vertical bar f - Q(h)f vertical bar B(p,q)(mu) <= Ch(nu-mu)vertical bar f vertical bar B(p,q)(nu) for all f is an element of B(p,q)(nu)(R(s)) is valid for all h > 0, where C is a constant independent of h and f. Density of quasi-projection operators in Besov spaces is also discussed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 200
页数:15
相关论文
共 22 条
  • [1] [Anonymous], 1991, CBMS REGIONAL C SERI
  • [2] De Boor C., 1973, Journal of Approximation Theory, V8, P19, DOI 10.1016/0021-9045(73)90029-4
  • [3] de Boor C., 1976, Approximation Theory II, VII, P1
  • [4] APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D))
    DEBOOR, C
    DEVORE, RA
    RON, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) : 787 - 806
  • [5] DeVore R. A., 1993, Constructive Approximation
  • [6] DEVORE RA, APPROXIMATION USING
  • [7] Gariepy R., 1994, Modern Real Analysis
  • [8] Order of linear approximation from shift-invariant spaces
    Jetter, K
    Zhou, DX
    [J]. CONSTRUCTIVE APPROXIMATION, 1995, 11 (04) : 423 - 438
  • [9] Jia R-Q., 2002, WAVELET ANAL APPL, P153
  • [10] Bessel sequences in Sobolev spaces
    Jia, RQ
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 298 - 311